• Title/Summary/Keyword: Biotechnology industry

Search Result 1,898, Processing Time 0.033 seconds

Next Generation Technology to Minimize Ecotoxicity and to Develop the Sustainable Environment: White Biotechnology

  • Sang, Byoung-In;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.3
    • /
    • pp.143-148
    • /
    • 2005
  • This review aims to show that industrial sustainable chemistry, minimizing or reducing the ecological impacts by the chemicals, is not an emerging trend, but is already a reality through the application of 'White Biotechnology' such as 'green' chemistry and engineering expertise. A large number of current industrial case studies are presented, as well as new developments from the chemical industry. The case studies cover new chemistry, new process design and new equipment. By articulating the requirements for industrial application of sustainable chemistry, this review also seeks to bridge any existing gap between academia and industry regarding the R & D and engineering challenges needed to ensure green chemistry research enables a more sustainable future chemical industry considering eco-toxicological impacts.

Elicitor-treated extracts of Saururus chinensis inhibit the expression of inducible nitric oxide synthase and cyclooxygenase-2 enzyme expression in Raw cells for suppression of inflammation

  • Lee, Eun-Ho;Park, Hye-Jin;Kim, Dong-Hee;Jung, Hee-Young;Kang, In-Kyu;Cho, Young-Je
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.2
    • /
    • pp.149-155
    • /
    • 2019
  • Elicitor treatment was performed to increase the anti-inflammatory activity of useful biological sources. The result showed that elicitor-treated Saururus chinensis leaf extracts positively affected nitric oxide (NO) production, and the expression of inducible NO synthase and cyclooxygenase-2 compared to extracts not exposed to elicitor treatment. This finding identified elicitor treatment as a suitable strategy for increasing the biological activity of S. chinensis. Therefore, elicitor-treated S. chinensis is useful both as health functional and medicinal materials.

What is Epigenomics and how it will be applied to the food industry? (Epigenomics는 무엇이며 식품산업에 어떻게 응용될 것인가?)

  • Yoo, Jin Young;Han, Ga Eun;Lee, Jong Hun
    • Food Science and Industry
    • /
    • v.50 no.1
    • /
    • pp.11-15
    • /
    • 2017
  • Epigenomics is a study that analyzes and quantifies various epigenetic alterations that affect gene expressions in cells from the viewpoint of collective characteristics on biological molecular pools. DNA methylation and histone modification in cells can induce the epigenetic alterations. Especially, epigenetic alterations influenced by external factors as ingested foods and other environmental factors have been examined in the whole genome regions, which provide accumulated data of altered regions or patterns of global genome, Statistical analyses of these regions or patterns enables us to correlate epigenomic changes with human diseases in the whole genome region. Finding meaningful regulators is a major concern of epigenomic research in recent years, and these results will give the food industry an important clue to future food

Synthesis of Isoamyl Fatty Acid Ester, a Flavor Compound, by Immobilized Rhodococcus Cutinase

  • Ye Won Jeon;Ha Min Song;Ka Yeong Lee;Yeong A Kim;Hyung Kwoun Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.6
    • /
    • pp.1356-1364
    • /
    • 2024
  • Isoamyl fatty acid esters (IAFEs) are widely used as fruity flavor compounds in the food industry. In this study, various IAFEs were synthesized from isoamyl alcohol and various fatty acids using a cutinase enzyme (Rcut) derived from Rhodococcus bacteria. Rcut was immobilized on methacrylate divinylbenzene beads and used to synthesize isoamyl acetate, butyrate, hexanoate, octanoate, and decanoate. Among them, Rcut synthesized isoamyl butyrate (IAB) most efficiently. Docking model studies showed that butyric acid was the most suitable substrate in terms of binding energy and distance from the active site serine (Ser114) γ-oxygen. Up to 250 mM of IAB was synthesized by adjusting reaction conditions such as substrate concentration, reaction temperature, and reaction time. When the enzyme reaction was performed by reusing the immobilized enzyme, the enzyme activity was maintained at least six times. These results demonstrate that the immobilized Rcut enzyme can be used in the food industry to synthesize a variety of fruity flavor compounds, including IAB.

Furan in Thermally Processed Foods - A Review

  • Seok, Yun-Jeong;Her, Jae-Young;Kim, Yong-Gun;Kim, Min Yeop;Jeong, Soo Young;Kim, Mina K.;Lee, Jee-yeon;Kim, Cho-il;Yoon, Hae-Jung;Lee, Kwang-Geun
    • Toxicological Research
    • /
    • v.31 no.3
    • /
    • pp.241-253
    • /
    • 2015
  • Furan ($C_4H_4O$) is a volatile compound formed mostly during the thermal processing of foods. The toxicity of furan has been well documented previously, and it was classified as "possible human carcinogen (Group 2B)" by the International Agency for Research on Cancer. Various pathways have been reported for the formation of furan, that is, thermal degradation and/or thermal rearrangement of carbohydrates in the presence of amino acids, thermal degradation of certain amino acids, including aspartic acid, threonine, ${\alpha}$-alanine, serine, and cysteine, oxidation of ascorbic acid at higher temperatures, and oxidation of polyunsaturated fatty acids and carotenoids. Owing to the complexity of the formation mechanism, a vast number of studies have been published on monitoring furan in commercial food products and on the potential strategies for reducing furan. Thus, we present a comprehensive review on the current status of commercial food monitoring databases and the possible furan reduction methods. Additionally, we review analytical methods for furan detection and the toxicity of furan.

The Diversification of Dairy Products in the Era of Trade Liberalization (무역자유화 시대에 따른 유가공 제품의 다양화 방향)

  • Jeon, Ho-Nam;Yang, Jin-O
    • Journal of Dairy Science and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.37-51
    • /
    • 2004
  • The liberalization of imports under the system of World Trade Organization (WTO) will provide a serious impact on Korean dairy industry when foreign competitive dairy products are introduced from any countries in the world. With the importation of dairy products, Korean dairy industry may bring about the limitation of raw milk production, decline of the working ration in facilities and loss of diversification of dairy products. Therefore, Korean dairy industry should prepare high quality dairy products to secure international competitions against the opening of importation. In conclusion, development of high quality and functional dairy products that are satisfied to consumers are the most important subjects to overcome the adverse circumstance as WTO. This report reviews the direction of the diversification of dairy products in the Era of trade liberalization.

  • PDF

On-trend utilization of rheological instruments in food industry (식품산업에서 물성분석장치의 활용 동향)

  • Oh, Im Kyung;Lee, Suyong
    • Food Science and Industry
    • /
    • v.51 no.1
    • /
    • pp.2-7
    • /
    • 2018
  • Increasing attention has been paid to rheological approaches in the food industry due to great awareness of the quality control of foods by objective analysis. Therefore, a lot of food manufacturers started to make a great of effort to instrumentally investigate the rheological properties of foods. However, the appropriate utilization of rheological instruments in the field of food science has been met with numerous technical challenges because of the lack of fundamental knowledge and knowhow. In this article, a variety of rheological instruments conventionally used in the food industry are reviewed. In addition, new rheological instruments that have been rapidly growing in popularity are introduced for potential applications. This article may provide an opportunity for the food industry to move toward the active utilization of rheological instruments.

Purification and Characterization of $Ginsenoside-{\beta}-Glucosidase$

  • Yu Hongshan;Ma Xiaoqun;Guo Yong;Jin Fengxie
    • Journal of Ginseng Research
    • /
    • v.23 no.1 s.53
    • /
    • pp.50-54
    • /
    • 1999
  • In this paper, the saponin enzymatic hydrolysis of ginsenoside Rg3 was studied. The $ginsenoside-{\beta}-glucosidase$ from FFCDL-48 strain mainly hydrolyzed the ginsenoside Rg3 to Rh2, the enzyme from FFCDL-00 strain hydrolyzed Rg3 to the mixture of Rh2 and protopanaxadiol (aglycon). The $ginsenoside-{\beta}-glucosidase$ from FFCDL-48 strain was purified with a column of DEAE-Cellulose to one spot in the SDS polyacrylamide gel electrophoresis. During the purification, the enzyme specific acitvity was increased about 10 times. The purified $ginsenoside-{\beta}-glucosidase$ can hydrolyze the Rg3 to Rh2, but do not hydrolyze the $p-nitrophenyl-{\beta}-glucoside$ which is a substrate of original exocellulase such as ${\beta}-glucosidase$ of cellulose. The molecular weight of $ginsenoside-{\beta}-glucosidase$ was 34,000, the optimal temperature of enzyme reaction was $50^{\circ}C,$ and the optimal pH was 5.0.

  • PDF