• Title/Summary/Keyword: Biot변수

Search Result 8, Processing Time 0.021 seconds

Performance Analysis on the Trapezoidal Fins having Different Slope for Enhanced Heat Exchange (열교환 향상을 위한 경사각이 다른 사다리꼴 휜에 대한 성능해석)

  • 강형석;윤세창
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.3
    • /
    • pp.16-24
    • /
    • 1999
  • Performance of the trapezoidal fins having different upper side slope is investigated by the three dimensional analytic method. It is shown that one equation can be used to analyse the trapezoidal fins having different upper side slope by adjusting the slope factor only. The performances for these fins are represented as a function of the non-dimensional fin length, fin width, Biot number and the slope factor when the remaining variables are fixed arbitrarily. One of the results is that the fin effectiveness increases as Biot number, the non-dimensional fin width and the slope factor decrease and as the non-dimensional fin length increases in the case of Bi $\leq$ 0.1 but the trend of the fin shape effect on the effectiveness is somewhat irregular for higher Biot number(i.e. Bi = 0.3).

  • PDF

Study on the Estimation of Acoustic Behavior of the Automobile Interior Materials Using FEM and SEA (FEM.SEA기법을 이용한 흡.차음재의 음향 변수의 차량실내음압에 미치는 영향에 관한 연구)

  • Kim, Kwan-Ju;Lee, Geun-Ho;Kim, Hyun-Jun;Lee, Won-Ku
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.4
    • /
    • pp.378-385
    • /
    • 2009
  • In establishing silent environment such as automobile and industrial instrument, the roles of the insulating materials are critical. The proper and effective positioning of insulating materials is essential in the field of noise as well as in designing silent automobile. In this paper, we proposed the systematic and efficient scheme for optimizing complete automotive interiors for noise control. In order to attain this purpose, following analysis has been carried out: First, measuring the Biot parameters of insulating materials and the transmission loss with reflecting the appropriate arrangement of insulating materials has been experimented. In addition, we made comparison among transmission loss by the tools of analysis and verification, experimental value under consideration of various situations of automobile and analysis by the SEA.

Finite Element analysis of Acoustic Behavior of Absorbent Materials with experimental Verification (유한요소법에 의한 흡음재 음향특성 연구 및 검증)

  • 정환익;김관주;박진규;김상헌
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.874-878
    • /
    • 2003
  • Acoustic materials are used for the purpose of absorbing noise and reducing transmission of sound into the receiving room. The purpose of this research is to predict the performance of absorbent materials with respect to absorbing behavior and transmission loss as possible as accurately. The performance of the absorbent materials are carried out systematically as follows: The Biot parameter are measured, first. Then using above parameters as input, LMS's SYSNOISE and VIOLINS programs are used to predict absorption coefficient and transmission loss values, which magnitudes are compared with experimental results. As an sample acoustic material, SK SKY VIVA and PET are selected.

  • PDF

A Numerical Study on Thermo-hydro-mechanical Coupling in Continuum Rock Mass Based on the Biot′s Consolidation Theory (Biot의 압밀 이론에 근거한 연속체 암반의 열-수리-역학 상호작용의 수치적 연구)

  • 이희석;양주호
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.105-115
    • /
    • 2000
  • As large underground projects such as radioactive waste disposal, hot water and heat storage, and geothermal energy become influential, the study, which consider all aspects of thermics, hydraulics and mechanics would be needed. Thermo Hydro-Mechanical coupling analysis is one of the most complex numerical technique because it should be implemented with the combined three governing equations to analyze the behavior of rock mass. In this study, finite element code, which is based on Biot's consolidation theory, was developed to analyze the thermo-hydro-mechanical coupling in continuum rock mass. To verify the implemented program, one-dimensional consolidation model under the isothermal and non-isothermal conditions was analyzed and was compared with the analytic solution. The parametric study on two-dimensional consolidation was also performed and the effects of several factors such as poisson's ratio and hydraulic anisotropy on rock mass behavior were investigated. In the future, this program would be revised to be used for analysis of general discontinuous media with incorporating discrete joint model.

  • PDF

A Numerical Study on Thermo-hydro-mechanical Coupling in Continuum Rock Mass Based on the Biot's Consolidation Theory (Biot의 압밀 이론에 근거한 연속체 암반의 열-수리-역학 상호작용의 수치적 연구)

  • 이희석;양주호
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.355-365
    • /
    • 2000
  • As large underground projects such as radioactive waste disposal, hot water and heat storage, and geothermal energy become influential, the study, which consider all aspects of thermics, hydraulics and mechanics would be needed. Thermo-Hydro-Mechanical coupling analysis is one of the most complex numerical technique because it should be implemented with the combined three governing equations to analyze the behavior of rock mass. In this study, finite element code, which is based on Biot's consolidation theory, was developed to analyze the thermo-hydro-mechanical coupling in continuum rock mass. To verify the implemented program, one-dimensional consolidation model under the isothermal and non-isothermal conditions was analyzed and was compared with the analytic solution. The parametric study on two-dimensional consolidation was also performed and the effects of several factors such as poisson's ratio and hydraulic anisotropy on rock mass behavior were investigated. In the future, this program would be revised to be used for analysis of general discontinuous media with incorporating discrete joint model.

  • PDF

Computational Analysis of Sound Transmission of Insulating Materials Using FEM (전산 해석에 의한 차음재의 투과손실 예측)

  • 정환익;김관주;박진규;김형근;이원구
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.694-698
    • /
    • 2004
  • The importance of insulating material becomes greater recently in order to attain a quieter life style amidst today's sound noise such as transportation, industrial machinery. The demand for insulating material is increasing due to the increase of noise space. It is reasonable to predict the transmission loss and the absorption of the insulating Material before arranging it in the appropriate places and attaining a Pleasant acoustic environment inside the space. The experiments of insulating material's were performed using Impedance tube Type 4206 T of B&K, and VIOLINS which is a FEM Program of LMS was used for the analysis

  • PDF

Analysis of Transient Conduction Heat Loss of Solid Sphere between Constant and Variable Free Convection (상수 또는 변수의 대류 경계조건을 가지는 구의 과도열전도 손실에 대한 해석)

  • Kim, M.J.;Chea, G.H.
    • Journal of Power System Engineering
    • /
    • v.14 no.4
    • /
    • pp.17-22
    • /
    • 2010
  • 본 연구는 구의 과도 열전도에 의한 열손실을 계산하는 데 있어, 외부의 경계조건인 대류의 조건에 해당하는 상황을 상수 및 변수로 가정하였을 경우의 열전달문제를 해석한 것이다. 이 문제를 해결하기 위해 집중열용량법을 사용하고 있으며, 대류열전달계수의 값이 온도의 함수로 변한다고 가정하여 계산하였다. 계산을 수행한 결과 대류경계조건의 값을 상수로 가정한 경우가 열손실이 높이 평가된다는 것을 알았고, 이러한 경향을 상관식으로 정리하였다.

Cap Model을 이용한 기초식반의 수동해석(I) -범용프로그램의 검증과 수치계산례-

  • 박병기;정진섭
    • Geotechnical Engineering
    • /
    • v.3 no.2
    • /
    • pp.29-40
    • /
    • 1987
  • This paper aims at investigating the characteristics of soil deformation by finite element method (FEM) coupling the cap model with the multi.purpose program developed by authors for the analysis of foundation displacement. The cap model as the constitutive equation has proved to be very useful to a partially saturated roils as well as rocks with high accuracy. As described in the Previous Paper (Park et al 1987) , there exist some difficulties in the determination of soil parameters in order to use the cap model at Present. However the authors have been studying to seek the method for the determination of the soil parameters from the laboratory results of conventional cylindrical triaxial test. Though the computer program advocated by foreign scholars has been kept secret, authors accomplished in performing the FEM analysis by the algorithm and program developed by authors for the cap model. Good results are obtained compared with those published already by Desai(1981) The main conclusions analyzed are as follows: 1. The cap model can be coupled with the multi.purpose computer program of authors bases on the Biot's consolidation theory without loss of generality. 2. Big difference appears in the settlement of center of the embankment between the cap modes and the modified Cam clay model in undrained conditions. The more study on which is more accurate should be performed in this respect.

  • PDF