• Title/Summary/Keyword: Biosynthetic pathway

Search Result 227, Processing Time 0.021 seconds

Advances in Biochemistry and Microbial Production of Squalene and Its Derivatives

  • Ghimire, Gopal Prasad;Nguyen, Huy Thuan;Koirala, Niranjan;Sohng, Jae Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.441-451
    • /
    • 2016
  • Squalene is a linear triterpene formed via the MVA or MEP biosynthetic pathway and is widely distributed in bacteria, fungi, algae, plants, and animals. Metabolically, squalene is used not only as a precursor in the synthesis of complex secondary metabolites such as sterols, hormones, and vitamins, but also as a carbon source in aerobic and anaerobic fermentation in microorganisms. Owing to the increasing roles of squalene as an antioxidant, anticancer, and anti-inflammatory agent, the demand for this chemical is highly urgent. As a result, with the exception of traditional methods of the isolation of squalene from animals (shark liver oil) and plants, biotechnological methods using microorganisms as producers have afforded increased yield and productivity, but a reduction in progress. In this paper, we first review the biosynthetic routes of squalene and its typical derivatives, particularly the squalene synthase route. Second, typical biotechnological methods for the enhanced production of squalene using microbial cell factories are summarized and classified. Finally, the outline and discussion of the novel trend in the production of squalene with several updated events to 2015 are presented.

Systematic Analysis of the Anticancer Agent Taxol-Producing Capacity in Colletotrichum Species and Use of the Species for Taxol Production

  • Choi, Jinhee;Park, Jae Gyu;Ali, Md. Sarafat;Choi, Seong-Jin;Baek, Kwang-Hyun
    • Mycobiology
    • /
    • v.44 no.2
    • /
    • pp.105-111
    • /
    • 2016
  • Paclitaxel (taxol) has long been used as a potent anticancer agent for the treatment of many cancers. Ever since the fungal species Taxomyces andreanae was first shown to produce taxol in 1993, many endophytic fungal species have been recognized as taxol accumulators. In this study, we analyzed the taxol-producing capacity of different Colletotrichum spp. to determine the distribution of a taxol biosynthetic gene within this genus. Distribution of the taxadiene synthase (TS) gene, which cyclizes geranylgeranyl diphosphate to produce taxadiene, was analyzed in 12 Colletotrichum spp., of which 8 were found to contain the unique skeletal core structure of paclitaxel. However, distribution of the gene was not limited to closely related species. The production of taxol by Colletotrichum dematium, which causes pepper anthracnose, depended on the method in which the fungus was stored, with the highest production being in samples stored under mineral oil. Based on its distribution among Colletotrichum spp., the TS gene was either integrated into or deleted from the bacterial genome in a species-specific manner. In addition to their taxol-producing capacity, the simple genome structure and easy gene manipulation of these endophytic fungal species make them valuable resources for identifying genes in the taxol biosynthetic pathway.

Flux Regulation Patterns and Energy Audit of E. coli B/r and K-12

  • Lee, Jin-Won;Goel, Akshay;Ataai, Mohammad-M.;Domach, Michael-M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.258-267
    • /
    • 2002
  • A flux determination methodology has been built which enables to develop constrained stoichiometric relationships and metabolic balances. The analysis differs from those developed for anaerobic growth conditions in that cell mass formation is a significant sink for carbon. When combined with experimental measurements, a determined system of equations results yielded tricarboxylic acid (TCA) cycle and glycolytic fluxes. The methodology was implemented to determine the fluxes of E. coli B/r and K12, and it was found that as the growth rate in a glucose minimal medium increased, the cells became increasing glycolytic and the TCA fluxes either leveled off or declined. The pattern identified for the TCA fluxes corresponded to ${\alpha}$-ketoglutarate dehydrogenase's induction-repression pattern, thereby suggesting that the induction-repression of the enzyme could result in significant flux changes. When the minimum flux solution was contrasted to the glycolytic and TCA fluxes determined, two observations were made. First, the minimum flux could provide the cell's biosynthetic ATP requirements. Second, at a high growth rate in a glucose medium, the excess glycolytic flux exceeded that of the TCA cycle, which appeared to more closely match the biosynthetic needs.

Ginkgolides Production in Embryo-derived Ginkgo biloba Plantlet (기내배양한 은행 유식물에서의 Ginkgolide의 생산)

  • Jeon, Mee-Hee;Sung, Sang-Hyun;Jeon, Soon-Hwa;Huh, Hoon;Kim, Young-Choong
    • Korean Journal of Pharmacognosy
    • /
    • v.24 no.4
    • /
    • pp.304-308
    • /
    • 1993
  • A platelet activating factor(PAF) antagonist ginkgolides produced from Ginkgo biloba are well known for their potential usage in septic shock and other PAF related diseases. Even though they are extracted from the leaves and on occasion the root bark, the exact biosynthetic site and pathway have not proved yet. In order to locate the enzymes involved and elucidate the biosynthetic site of the compounds, embryo-derived aseptic intact plantlet and plantlet without root have been cultured on 0.3% active carbon-containing solid Murashige and Skoog's medium. The leaves from the six-week-old normal plantlet contained similar amount of ginkgolide B to that of outdoor plant leaves, while the plantlets without root had less than 30% of the ginkgolide B compared to the in vitro intact plantlets. The results suggest that the ginkgolides may be synthesized in the root and transported to the aerial part.

  • PDF

A Mutation of a Putative NDP-Sugar Epimerase Gene in Ralstonia pseudosolanacearum Attenuates Exopolysaccharide Production and Bacterial Virulence in Tomato Plant

  • Hyoung Ju Lee;Sang-Moo Lee;Minseo Choi;Joo Hwan Kwon;Seon-Woo Lee
    • The Plant Pathology Journal
    • /
    • v.39 no.5
    • /
    • pp.417-429
    • /
    • 2023
  • Ralstonia solanacearum species complex (RSSC) is a soil borne plant pathogen causing bacterial wilt on various important crops, including Solanaceae plants. The bacterial pathogens within the RSSC produce exopolysaccharide (EPS), a highly complicated nitrogencontaining heteropolymeric polysaccharide, as a major virulence factor. However, the biosynthetic pathway of the EPS in the RSSC has not been fully characterized. To identify genes in EPS production beyond the EPS biosynthetic gene operon, we selected the EPS-defective mutants of R. pseudosolanacearum strain SL341 from Tn5-inserted mutant pool. Among several EPSdefective mutants, we identified a mutant, SL341P4, with a Tn5-insertion in a gene encoding a putative NDP-sugar epimerase, a putative membrane protein with sugar-modifying moiety, in a reverse orientation to EPS biosynthesis gene cluster. This protein showed similar to other NDP-sugar epimerases involved in EPS biosynthesis in many phytopathogens. Mutation of the NDP-sugar epimerase gene reduced EPS production and biofilm formation in R. pseudosolanacearum. Additionally, the SL341P4 mutant exhibited reduced disease severity and incidence of bacterial wilt in tomato plants compared to the wild-type SL341 without alteration of bacterial multiplication. These results indicate that the NDP-sugar epimerase gene is required for EPS production and bacterial virulence in R. pseudosolanacearum.

Biosynthesis of L-Azetidine-2-Carboxylic Acid In Actinoplanes ferrugineus

  • Lee, Kang-Man
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1986.12a
    • /
    • pp.505.2-506
    • /
    • 1986
  • L-Azetidine-2-carboxylic acid (A-2-C), a four-membered cyclic imino acid has been identified in certain plants, and the microorganism Actinoplanes ferrugineus. The imino acid A-2-C has a physiological significance as an antgaonist of proline during peptide synthesis. The biosynthetic mechanism for the formation of A-2-C has not been studied in any detail. By using various amino acids such as methionine and S-adenosyl-L-methionine labeled with deuterium or carbon-14, the details of the biosynthetic pathway and a possible mechanism for the formation of L-A-2-C in .4. ferrugineus have been unravelled, Both in vivo and in vitro experimental results suggest the biosynthesis of L-A-2-C is mediated by a confactor containing a carbonyl group, probably pyridoxal Phosphate. S-Adenosyl-L-methionine, which seems to be the direct biosynthetic substrate, has undergone a f-displacement by an ${\alpha}$-amino group of the amino acid portion of the substrate S-adenosyl-L-methionine potentially via a vinylglycine intermediate. The overall stereochemical events at the ${\beta}$-carbon of the substrate have been shown to inversion of configuration. The overall stereochemical events at the -position of the sub- strate have also been shown to occur with inversion of configuration. The ${\beta}$, ${\gamma}$-elimination reaction of the substrate seems to follow a cisoidal-type mechanism and the addition portion of the reaction a transoidal-type mechanism . The assignment of the proton NMR of A-2-C has been deduced by apply- ing NOE difference experiments, Gd(III) line-broadening experiments and 2D-NOESY experiments of regio-and stereospecificially deuterated A-2-C's.

  • PDF

Ability for Biosynthesis of C27 Brassinosteroids by an Enzyme Pool Prepared from Cultured Cells of Phaseolus vulgaris (강낭콩 현탁배양세포에서 추출된 Enzyme Pool의 C27 Brassinosteroids 합성 능력)

  • Kim Tae-Wuk;Joo Se-Hwan;Kim Seong-Ki
    • Journal of Plant Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.63-71
    • /
    • 2005
  • A cell-free enzyme solution prepared from suspension cultured cells of Phaseolus vulgaris successfully mediated conversions of cholesterol $\to$ cholestanol and 6-deoxo-28-norteasterone $\leftrightarrow$ 6-deoxo-28-nor-3-dehydroteasterone $\leftrightarrow$ 6-deoxo-28-nortyphasterol $\to$ 6-deoxo-28-norcastasterone $\to$ 28-norcastasterone. Al-though conversion of cholestanol to 6-deoxo-28-norteasterone intermediated by 6-deoxo-28-norcathasterone was not demonstrated, this strongly suggests that a complete set of biosynthetic enzymes catalyzing reactions from cholesterol to 28-norcastasterone via 6-deoxo-28-nor type brassinosteroids is endogenously present in the cells, which demonstrates that a $C_{27}$ brassinosteroids biosynthetic pathway, namely the late C-6 oxidation for $C_{27}$ brassinosteroids, is operative in the cells. Additionally, the enzyme solution mediated conversion of 28-norcastasterone to castasterone in the presence of S-adenosyl-methionine and NADPH, providing that the $C_{27}$ brassinosteroids biosynthesis is an important route to generate castasterone in the cells. Together with our previous finding that castasterone can be biosynthesized by the same biosynthetic pathway in tomato, this study demonstrates that the $C_{27}$ brassinosteroids biosynthesis is a common alternative process to maintain endo-genous level of castasterone, an active $C_{28}$ brassinosteroid, in plants.

Biosynthetic pathway of shikimate and aromatic amino acid and its metabolic engineering in plants (식물에서 shikimate 및 방향족 아미노산 생합성 경로와 이의 대사공학적 응용)

  • Lim, Sun-Hyung;Park, Sang Kyu;Ha, Sun-Hwa;Choi, Min Ji;Kim, Da-Hye;Lee, Jong-Yeol;Kim, Young-Mi
    • Journal of Plant Biotechnology
    • /
    • v.42 no.3
    • /
    • pp.135-153
    • /
    • 2015
  • The aromatic amino acids, which are composed of $\small{L}$-phenylalanine, $\small{L}$-tyrosine and $\small{L}$-tryptophan, are general components of protein synthesis as well as precursors for a wide range of secondary metabolites. These aromatic amino acids-derived compounds play important roles as ingredients of diverse phenolics including pigments and cell walls, and hormones like auxin and salicylic acid in plants. Moreover, they also serve as the natural products of alkaloids and glucosinolates, which have a high potential to promote human health and nutrition. The biosynthetic pathways of aromatic amino acids share a chorismate, the common intermediate, which is originated from shikimate pathway. Then, tryptophan is synthesized via anthranilate and the other phenylalanine and tyrosine are synthesized via prephenate, as intermediates. This review reports recent studies about all the enzymatic steps involved in aromatic amino acid biosynthetic pathways and their gene regulation on transcriptional/post-transcriptional levels. Furthermore, results of metabolic engineering are introduced as efforts to improve the production of the aromatic amino acids-derived secondary metabolites in plants.

Sphingolipid Metabolic Changes during Chiral C2-Ceramides Induced Apoptosis in Human Leukemia Cells

  • Baek, Mi-Young;Yoo, Hwan-Soo;Kazuyasu Nakaya;Moon, Dong-Cheul;Lee, Yong-Moon
    • Archives of Pharmacal Research
    • /
    • v.24 no.2
    • /
    • pp.144-149
    • /
    • 2001
  • N-acetylsphingosine (C2-ceramide) is a synthetic water-soluble ceramide mimicking the activity of natural ceramides. By fixing chiral conformation on carbon numbers 2 and 3 in the ceramide structure, four chiral C2-ceramides naming d-erythro-, I-erythro-, d-threo-and 1-three C2-ceramide were synthesized. We have investigated the chiral effects of these C2-ceramides on the sphingolipid metabolism, particularly on both the sphingolipid bio- synthetic pathway and on the degradation pathway. In both HL-60 and U937 cells, the chiral C2-ceramide ($10{\mu}\textrm{m}$) showed sphingosine accumulation monitored fluoromatrically by a high performance liquid chromatographic separation of the sphingoid bases. Most importantly, in HL-60 cells, l-erythro C2-ceramide induced a 50 fold increase in sphingosine as compared to the control, while l-threo C2-ceramide exhibited a minimal 7-fold in-crease. In contrast, sphinganine, another sphingoid base, showed less accumulation by any chiral C2-ceramide tested under the same conditions. These results suggested that chiral C2-ceramide primarilyacts on the sphingolipid degradation pathway rather than on the sphingolipid biosynthetic route. The strong $C_0/G_1$ phase arrest in the cell cycle by treatment of I-erythro C2-ceramide indicates that the blockade of the sphingolipid degradation pathway might be concomitantly involved in the dysfunction of the cell cycle. On the other hand, the fact that all chiral C2-ceramides tested failed to inhibit the activity of sphingosine kinase acting on the removal of sphingosine by producing sphingosine-1 -phosphate demonstrates that chiral C2- ceramides may increase sphingosine by activating various ceramidases by which natural ceramides are divided into sphingosine and free fatty acids. However, the precise steps involved in this interaction are still unknown.

  • PDF

Effects of tktA, $aroF^{FBR}$and aroL Expression in the Tryptophan-Producing Escherichia coli

  • Kim, Tae-Hyun;Namgoong, Suk;Kwak, Joon-Hyeok;Lee, Se-Yong;Lee, Heung-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.6
    • /
    • pp.789-796
    • /
    • 2000
  • In order to analyze the effects of tktA, $aroF^{FBR}$, and aroL expression in a tryptophan-producing Escherichia coli, a series of plasmids carrying the genes were constructed. Introduction of tktA, $aroF^{FBR}$, and aroL into the E. coli strain resulted in approximately 10-20 fold increase in the activities of transketolase, the feedback inhibition-resistant 3-deoxy-D-arabinoheptulsonate-7-phosphate synthase, and shikimate kinase. Expression of $aroF^{FBR}$ in the aroB mutant strain of E. coli resulted in the accumulation of 10 mM of 3-deoxy-D-arabinoheptulsonate-7-phosphate (DAHP) in the medium. Simultaneous expression of tktA and $aroF^{FBR}$ in the strain further increased the amount of excreted DAHP to 20 mM. In contrast, the mutant strain which has no gene introduced accumulated 0.5 mM of DAHP. However, the expression of tktA and $aroF^{FBR}$ in a tryptophan-producing E. coli strain did not lead to the increased production of tryptophan, but instead, a significant amount of shikimate, which is an intermediate in the tryptophan biosynthetic pathway, was excreted to the growth medium. Despite the fact that additional expression of shikimate kinase in the strain could possibly remove 90% of excreted shikimate to 0.1 mM, the amount of tryptophan produced was still unchanged. Removing shikimate using a cloned aroL gene caused the excretion of glutamate, which suggests disturbed central carbon metabolism. However, when cultivated in a complex medium, the strain expressing tktA, $aroF^{FBR}$, and aroL produced more tryptophan than the parental strain. These data indicate that additional rate-limiting steps are present in the tryptophan biosynthetic pathway, and the carbon flow to the terminal pathway is strictly regulated. Expressing tktA in E. coli cells appeared to impose a great metabolic burden to the cells as evidenced by retarded cell growth in the defined medium. Recombinant E. coli strains harboring plasmids which carry the tktA gene showed a tendency to segregate their plasmids almost completely within 24h.

  • PDF