• Title/Summary/Keyword: Biosorption model

Search Result 58, Processing Time 0.023 seconds

Optimization of Manufacturing Method for a Fiber Type of Biosorbent from Sludge Waste (폐슬러지로부터 섬유형 생체흡착제 제조방법의 최적화)

  • Seo, Ji Hae;Kim, Namgyu;Park, Munsik;Lee, Sunkyung;Park, Donghee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.9
    • /
    • pp.641-647
    • /
    • 2014
  • In this study, sludge waste which has a difficulty in treating it was used to manufacture a fiber type of biosorbent. To solve the problems such as the release of organic pollutants and the difficulty in separating solid from treated water, entrapment method using Ca-alginate was used to immobilize sludge waste. Considering ease of manufacture as well as improvement of adsorptive ability, the biosorbent was manufactured in the form of fiber type. Optimum immobilization condition for minimizing the amount of alginate used and maximizing the performance of biosorbent was determined to be 10 g/L alginate concentration, 40 g/L sludge concentration, and 0.3-0.4 mm fiber diameter. The maximum Cd(II) uptake of the biosorbent was 60.73 mg/g. Pseudo-second-order kinetic model and Langmuir isotherm model adequately described the dynamic and equilibrium behaviors of Cd(II) biosorption onto the biosorbent, respectively. In conclusion, sludge waste generated from wastewater treatment process is a cheap raw material for the manufacture of biosorbent which can be used to remove toxic heavy metals from industrial wastewaters efficiently.

Utilization of Corynebacterium glutamicum Biomass as a Regenerable Biosorbent for Removal of Reactive Dyes from Aqueous Solution (반응성 염료 제거를 위한 재생 가능한 흡착제로서 Corynebacterium glutamicum 바이오매스의 이용)

  • Won, Sung -Wook;Choi, Sun Beom;Han, Min Hee;Yun, Yeoung-Sang
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.542-547
    • /
    • 2005
  • Biosorption is considered to be a promising alternative to replace or supplement the present methods for the treatment of dye-containing wastewater. In this study, the protonated biomass of Corynebacterium glutamicum was evaluated for its potential to remove two types of reactive dyes (Reactive Red 4, Reactive Blue 4) from aqueous solution. The uptakes of dyes were enhanced with decrease in the solution pH, which was likely because the biomass functional groups increased at acidic pH and the positively charged sites could bind the negatively charged sulfonate group ($dye-SO_3^-$) of dye molecules. An equilibrium state was practically achieved in 10 hr. The Langmuir sorption model was used for the mathematical description of the sorption equilibrium. The maximum sorption capacities of C. glutamicum biomass for Reactive Red 4 and Reactive Blue 4 were estimated to 112.36 mg/g and 263.16 mg/g at pH 1, and 71.94 mg/g and 155.88 mg/g at pH 3.

Adsorption Characteristics of Cr6+ and As3+ Using Seaweed Biochar (해초 Biochar를 이용한 Cr6+과 As3+ 흡착 특성)

  • Kim, Bo-Ra;Shin, Woo-Seok;Kim, Young-Kee
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.483-488
    • /
    • 2015
  • This study examined the adsorption characteristics of $Cr^{6+}$ and $As^{3+}$ in the aqueous solution by Hizikia susiformis biochar which was collected from Jeju Island. The optimal pH for $Cr^{6+}$ and $As^{3+}$ adsorption were 2 and pH 6, respectively. Kinetic data showed that the adsorption occurred during the first 100 min, and the most of heavy metals were bound to biochars within 300 min. Moreover, the kinetic data presented that the course of adsorption follows the Pseudo first and second order models. The equilibrium data were well fitted by the Langmuir model and the $Cr^{6+}$ adsorption capacity (25.91 mg/g) was higher than that of $As^{3+}$ (16.54 mg/g). From these results, the seaweed biochar was shown to be a efficient adsorbent for $Cr^{6+}$ and $As^{3+}$ metals in a contaminated environment.

Studies on the Influence of Mercaptoacetic Acid (MAA) Modification of Cassava (Manihot sculenta Cranz) Waste Biomass on the Adsorption of Cu2+ and Cd2+ from Aqueous Solution

  • Horsfall, M. Jnr.;Spiff, A.I.;Abia, A.A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.7
    • /
    • pp.969-976
    • /
    • 2004
  • Cassava peelings waste, which is both a waste and pollutant, was chemically modified using mercaptoacetic acid (MAA) and used to adsorb $Cu^{2+}\;and\;Cd^{2+}$ from aqueous solution over a wide range of reaction conditions at $30^{\circ}C$. Acid modification produced a larger surface area, which significantly enhanced the metal ion binding capacity of the biomass. An adsorption model based on the $Cu^{2+}/Cd^{2+}$ adsorption differences was developed to predict the competition of the two metal ions towards binding sites for a mixed metal ion system. The phytosorption process was examined in terms of Langmuir, Freundlich and Dubinin-Radushkevich models. The models indicate that the cassava waste biomass had a greater phytosorption capacity, higher affinity and greater sorption intensity for $Cu^{2+}\;than\;Cd^{2+}$. According to the evaluation using Langmuir equation, the monolayer binding capacity obtained was 127.3 mg/g $Cu^{2+}$ and 119.6 mg/g $Cd^{2+}$. The kinetic studies showed that the phytosorption rates could be described better by a pseudo-second order process and the rate coefficients was determined to be $2.04{\times}10^{-3}\;min^{-1}\;and\;1.98{\times}10^{-3}\;min^{-1}\;for\;Cu^{2+}\;and\;Cd^{2+}$ respectively. The results from these studies indicated that acid treated cassava waste biomass could be an efficient sorbent for the removal of toxic and valuable metals from industrial effluents.

Preparation of Corncob Grits as a Carrier for Immobilizing Yeast Cells for Ethanol Production

  • Lee, Sang-Eun;Lee, Choon Geun;Kang, Do Hyung;Lee, Hyeon-Yong;Jung, Kyung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1673-1680
    • /
    • 2012
  • In this study, DEAE-corncobs [delignified corncob grits derivatized with 2-(diethylamino)ethyl chloride hydrochloride ($DEAE{\cdot}HCl$)] were prepared as a carrier to immobilize yeast (Saccharomyces cerevisiae) for ethanol production. The immobilized yeast cell reactor produced ethanol under optimized $DEAE{\cdot}HCl$ derivatization and adsorption conditions between yeast cells and the DEAE-corncobs. When delignified corncob grit (3.0 g) was derivatized with 0.5M $DEAE{\cdot}HCl$, the yeast cell suspension ($OD_{600}$ = 3.0) was adsorbed at >90% of the initial cell $OD_{600}$. This amount of adsorbed yeast cells was estimated to be 5.36 mg-dry cells/g-DEAE corncobs. The $Q_{max}$ (the maximum cell adsorption by the carrier) of the DEAE-corncobs was estimated to be 25.1 (mg/g), based on a Languir model biosorption isotherm experiment. When we conducted a batch culture with medium recycling using the immobilized yeast cells, the yeast cells on DEAE-corncobs produced ethanol gradually, according to glucose consumption, without cells detaching from the DEAE-corncobs. We observed under electron microscopy that the yeast cells grew on the surface and in the holes of the DEAE-corncobs. In a future study, DEAE-corncobs and the immobilized yeast cell reactor system will contribute to bioethanol production from biomass hydrolysates.

Preparation of chitosan, sunflower and nano-iron based core shell and its use in dye removal

  • Turgut, Esra;Alayli, Azize;Nadaroglu, Hayrunnisa
    • Advances in environmental research
    • /
    • v.9 no.2
    • /
    • pp.135-150
    • /
    • 2020
  • Many industries, such as textiles, chemical refineries, leather, plastics and paper, use different dyes in various process steps. At the same time, these industrial sectors are responsible for discharging contaminants that are harmful and toxic to humans and microorganisms by introducing synthetic dyes into wastewater. Of these dyes, methylene blue dye, which is classified as basic dyes, is accepted as a model dye. For this reason, methylene blue dye was selected in the study and its removal from the water was studied. In this study, two efficient biosorbents were developed from chitosan and sunflower waste, an agro-industrial waste and modified using iron nanoparticles. The biosorption efficiency was evaluated for methylene blue (MB) dye removal from aqueous solution under various parameters such as treating agent, solution pH, biosorbent dosage, contact time, initial dye concentration and temperature. We investigated the kinetic properties of dye removal from water for Chitosan-Sunflower (CS), Chitosan-Sunflower-Nanoiron (CSN). When the wavelength of MB dye was spectrophotometrically scanned, the maximum absorbance was determined as 660 nm. For the core shell biosorbents we obtained, we found that the optimum time for removal of MB from wastewater was 60 min. The pH of the best pH was determined as 5 in the studied pH. The most suitable temperature for the experiment was determined as 30℃. SEM-EDAX, TEM, XRD, and FTIR techniques were used to characterize biosorbents produced and modified in the experimental stage and to monitor the change of biosorbent after dye removal. The interactions of the paint with the surface used for removal were explained by these techniques. It was calculated that 80% of CS and 88% of CSN removed MB in optimum conditions. Also, the absorption of MB dye onto the surface was investigated by Langmiur and Frendlinch isotherms and it was determined from the results that the removal was more compatible with Langmiur isotherm.

Characteristics of Heavy Metal Biosorption by Pseudomonas cepacia KH410 (Pseudomonas cepacia KH410의 중금속 흡착특성)

  • 박지원;김영희
    • Korean Journal of Microbiology
    • /
    • v.37 no.3
    • /
    • pp.197-203
    • /
    • 2001
  • An ubiquitous bacterium, Pseudomonar cepacia KH410 was isolated from fresh water plant root and identified. Adsorption of heavy metals of lead, cadmium and copper by this strain was investigated. Optimal conditions foradsorption was 1.0 dry g-biomass, at pH 4.0 and temperature of $40^{\circ}C$. Adsorption equilibrium reached max-imum after 120 min in 1000 mg/l metal solutions. The adsorption capacity (K) of lead was 5.6 times higher thancadmium and 4.0 times higher than that of copper. Adsorption of lead was applicable for Langmuir modelwhereas Freundlich model for cadmium and copper, respectively. Adsorption strength (1/n) of heavy metal ionswere in the order of lead>copper>cadmium. Uptake capacity of lead, cadmium and copper by dried cell was83.2,42.0,65.2 mg/g-biomass, respectively. Effective desorption was induced 0.1 M HCI for lead and 0.1 $HNO_3$ for cadmium and copper. Pretreatment to increase ion strength was the most effective with 0.1 M KOH.Uptake by immobilized cell was 77.8,58.5,71.2 mg/g-biomass for lead, cadmium and copper, respectively. Theimmobilized cell was more effective than ion exchange resin on removal of heavy metals in solution containinglight metals.

  • PDF

Characteristics of Heavy Metal Biosorption by Enterobacter intermedious KH410 (Enterobacter intermedious KH410의 중금속 흡착 특성)

  • 김영희;정영기;김광현;김병우;정경태;김병석;박지원;이동준;신현철
    • Journal of Life Science
    • /
    • v.13 no.4
    • /
    • pp.421-427
    • /
    • 2003
  • A natural habit at bacterium, Enterobacter intermedious KH410 was isolated from freshwater plant root and identified. Adsorption of heavy metals such as lead, cadmium, and copper by this strain was examined. The minimal inhibitory concentrations(MIC) for each metal were 1.78 mM for lead, 0.17 mM for cadmium and 1.39 mM for lopper, respectively. Maximum production of dried cell was 2.56 g/$\ell$ in LB medium containing 0.5% NaCl, 1% yeast extract and 1% of lactose. Optimal conditions for adsorption were 0.6 dry g-biomass, at pH 4.0 and the temperature of $20^{\circ}C$. Adsorption equilibrium reached maximum after 30 min in 400 mg/$\ell$ metal solution. The adsorption capacity (K) of copper was 1.5 times higher than that of cadmium and lead was 1.1 times higher than that of cadmium. from the results obtained in this study, Freundlich adsorption model was applicable for all metals. Adsorption strength (1/n) of heavy metal ions were in the order of cadmium>copper>lead. The adsorption of dried cell for lead, cadmium, and copper was 56.2, 58.0, 55.8 mg/g-biomass, respectively. Pretreatment to increase ion strength was the most effective with 0.1 M NaOH whereas slight difference was found both KOH and $CaCl_2$ upon same concentration. Effective desorption was induced by 0.1 M EDTA for lead and 0.1 M $HNO_2$ for cadmium and copper.