• Title/Summary/Keyword: Biosorption mechanism

Search Result 16, Processing Time 0.027 seconds

Biosorption of Lead(II) by Arthrobacter sp. 25: Process Optimization and Mechanism

  • Jin, Yu;Wang, Xin;Zang, Tingting;Hu, Yang;Hu, Xiaojing;Ren, Guangming;Xu, Xiuhong;Qu, Juanjuan
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.8
    • /
    • pp.1428-1438
    • /
    • 2016
  • In the present work, Arthrobacter sp. 25, a lead-tolerant bacterium, was assayed to remove lead(II) from aqueous solution. The biosorption process was optimized by response surface methodology (RSM) based on the Box-Behnken design. The relationships between dependent and independent variables were quantitatively determined by second-order polynomial equation and 3D response surface plots. The biosorption mechanism was explored by characterization of the biosorbent before and after biosorption using atomic force microscopy (AFM), scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The results showed that the maximum adsorption capacity of 9.6 mg/g was obtained at the initial lead ion concentration of 108.79 mg/l, pH value of 5.75, and biosorbent dosage of 9.9 g/l (fresh weight), which was close to the theoretically expected value of 9.88 mg/g. Arthrobacter sp. 25 is an ellipsoidal-shaped bacterium covered with extracellular polymeric substances. The biosorption mechanism involved physical adsorption and microprecipitation as well as ion exchange, and functional groups such as phosphoryl, hydroxyl, amino, amide, carbonyl, and phosphate groups played vital roles in adsorption. The results indicate that Arthrobacter sp. 25 may be potentially used as a biosorbent for low-concentration lead(II) removal from wastewater.

Biosorption and Elution of Lead by Undaria pinnatifida

  • Suh, Jung-Ho;Suh, Myung-Gyo;Lee, Yong-Hee;Lee, Kook-Eui;Kim, Bong-Seob
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2003.06a
    • /
    • pp.111-115
    • /
    • 2003
  • Biosorption of lead by marine algae, Undaria pinnatifida, was examined. The biosorption capacity of lead by U. pinnatifida was above 30% of its own weight and proportional to the initial lead concentration. However, the opposite result was shown in different initial weight of biomass. The mechanism of biosorption was accorded to the ion exchange process.

  • PDF

Characteristics of Carbon Source Biosorption (유기물 생흡착 현상에 관한 기초연구)

  • Lee, Dong-Hoon;Lee, Doo-Jin;Kim, Seung-Jin;Chung, Jonwook;Bae, Wookeun
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.23-29
    • /
    • 2006
  • Biosorption technology was used to remove hazardous materials from wastewater, herbicide, heavy metals, and radioactive compounds, based on binding capacities of various biological materials. Biosorption process can be explained by two steps; the first step is that target contaminants is in contact with microorganisms and the second is that the adsorbed target contaminants is infiltrated with inner cell through metabolically mediated or physico-chemical pathways of uptake. Until recently, no information is available to explain the definitive mechanism of biosorption. The purpose of this study is to evaluate biosorption capabilities of organic matters using activated sludge and to investigate affecting factors upon biosorption. Over 49% of organic matter could be removed by positive biosorption reaction under anoxic condition within 10 minutes. The biosorption capacities were constant at around 50 mg-COD/mg-MLSS for all batch experiments. As starvation time increased under aerobic or anaerobic conditions, biosorption capacity increased since higher stressed microorganisms by starvation was more brisk. Starvation stress of microorganisms was higher at aerobic condition than anaerobic one. As temperature increased or easily biodegradable carbon sources were used, biosorption capacities increased. Consequently, biosorption can be estimated by biological -adsorbed capability of the bacterial cell-wall and we can achieve the cost-effective and non -residual denitrification with applying biosorption to the bio-reduction of nitrate.

Removal of Pb(II) from wastewater by biosorption using powdered waste sludge

  • Jang, Hana;Park, Nohback;Bae, Hyokwan
    • Membrane and Water Treatment
    • /
    • v.11 no.1
    • /
    • pp.41-48
    • /
    • 2020
  • Lead is a highly toxic heavy metal that causes serious health problems. Nonetheless, it is increasingly being used for industrial applications and is often discharged into the environment without adequate purification. In this study, Pb(II) was removed by powdered waste sludge (PWS) based on the biosorption mechanism. Different PWSs were collected from a submerged moving media intermittent aeration reactor (SMMIAR) and modified Ludzack-Ettinger (MLE) processes. The contents of extracellular polymeric substances were similar, but the surface area of MLE-PWS (2.07 ㎡/g) was higher than that of SMMIAR-PWS (0.82 ㎡/g); this is expected to be the main parameter determining Pb(II) biosorption capacity. The Bacillaceae family was dominant in both PWSs and may serve as the major responsible bacterial group for Pb(II) biosorption. Pb(II) biosorption using PWS was evaluated for reaction time, salinity effect, and isotherm equilibrium. For all experiments, MLE-PWS showed higher removal efficiency. At a fixed initial Pb(II) concentration of 20 mg/L and a reaction time of 180 minutes, the biosorption capacities (qe) for SMMIAR- and MLE-PWSs were 2.86 and 3.07 mg/g, respectively. Pb(II) biosorption using PWS was rapid; over 80% of the maximum biosorption capacity was achieved within 10 minutes. Interestingly, MLE-PWS showed enhanced Pb(II) biosorption with salinity values of up to 30 g NaCl/L. Linear regression of the Freundlich isotherm revealed high regression coefficients (R2 > 0.968). The fundamental Pb(II) biosorption capacity, represented by the KF value, was consistently higher for MLE-PWS than SMMIAR-PWS.

Biosorption of Reactive Dyes using Chemically Modified Sewage Sludge (화학적으로 변형된 하수슬러지를 이용한 반응성염료의 생물흡착)

  • Han, Min-Hee;Choi, Gi-Wook;Yun, Yeoung-Sang
    • Clean Technology
    • /
    • v.13 no.3
    • /
    • pp.215-221
    • /
    • 2007
  • Biosorption is considered to be a promising alternative to replace the present methods for the treatment of dye-containing wastewater. In this study, sewage sludge was used as a biosorbent which could be one of the cheapest and most abundant biomaterials. The objective of this work is to develop a surface-modified biosorbent with enhanced sorption capacity and binding affinity. The FT-IR and potentiometric titration studies revealed that carboxyl, phosphateand amine groups played a role in binding of dye molecules. The binding sites for reactive dye Reactive Red 4 (RR 4) were identified to be amino groups present in the biomass. In this work, based on the biosorption mechanism, the performance of biosorbentcould be enhanced by the removal of inhibitory carboxyl groups from the biomass for practical application of the biosorbents. As a result, the maximum capacity of biomass was increased up to 130% and 210% of the increment of sorption capacity at pH 2 and 4, respectively. Therefore, chemically modified sewage sludge can be used as an effective and low-cost biosorbent for the removal of dyes from industrial discharges.

  • PDF

Reduction Kinetics of Hexavalent Chromium during Biosorption onto the Protonated Ecklonia Biomass

  • Park, Dong-Hui;Yun, Yeong-Sang;Park, Jeong-Jin;Kim, Sang-Min;Park, Jong-Mun
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.113-116
    • /
    • 2000
  • Hexavalent chromium was removed by means of biosorption onto the protonated brown seaweed biomass. During the biosorption Cr(VI) was reduced to Cr(III), which resulted in accumulation of Cr(III) in the solution. The Cr(VI) reduction rate increased with increases of initial Cr(VI) and biosorbent concentrations and decrease of solution pH. Based upon the experimental results at various conditions, we suggested the mechanism for the chromium removal as following serial reactions: (1) sorption of anionic Cr(VI) onto the positively charged site of biomass, (2) reduction of Cr(VI) to Cr(III) on the positively charged site, (3) desorption of Cr(III) from the positively charged site, and (4) sorption of cationic Cr(III) onto the negatively charged site of biomass.

  • PDF

Biosorption of Hg(II) ions from synthetic wastewater using a novel biocarbon technology

  • Singanan, Malairajan
    • Environmental Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.33-39
    • /
    • 2015
  • Mercury is a toxic pollutants present in different types of industrial effluents and is responsible for environmental pollution. Removal of Hg(II) ions from synthetic wastewater was studied using the activated biocarbon produced from the leaves of Tridax procumbens (Asteraceae). The particle size of the biocarbon (BC) is in the range of $100-120{\mu}m$. The effects of initial metal ion concentration, pH, contact time, and amount of biocarbon on the biosorption process were studied at temperature of $28{\pm}2^{\circ}C$. Batch experimental studies showed that an equilibrium time of 160 min was required for the maximum removal of Hg(II) at the optimized biocarbon dose of 2.5 g per 100 mL of synthetic wastewater. The optimum pH required for maximum removal (96.5%) of Hg(II) ions was found to be 5.5. The biosorption of metal ions onto activated biocarbon surface is probably via an ion exchange mechanism. The biocarbon can be regenerated with minimum loss. Further, it can be reused without any chemical activation. The findings of the research suggested that, the biocarbon produced from cost effective renewable resources can be utilized for the treatment of industrial wastewater.

Application of radiotracer technique in remediation of Zn(II) from aqueous solutions by dry cowdung powder

  • Shaikh, Sabrina Afzal;Bagla, Hemlata Kapil
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.456-461
    • /
    • 2022
  • Heavy metal pollution is caused due to anthropogenic activities and is considered as a serious environmental problem which endangers human health and environment. The present study deals with biosorption, an eco-friendly technique for the removal of heavy metal Zn(II) from aqueous medium. Various natural materials have been explored for the uptake of metal ions, where most of them are physically or chemically enhanced. Dry cowdung powder (DCP) has been utilized as a low-cost, environmentally friendly humiresin without any pre-treatment, thus demonstrating the concept of Green Chemistry. Batch biosorption studies using 65Zn(II) tracer were performed and the impact of different experimental parameters was studied. Results revealed that at pH 6, 94 ± 2% of Zn(II) was effectively biosorbed in 5 min, at 303 K. The process was spontaneous and exothermic, following pseudo-second-order reaction. The mechanism of heavy metal biosorption employing green adsorbent was therefore elucidated in order to determine the optimal method for removing Zn(II) ions. DCP has a lot of potential in the wastewater treatment industry, as seen by its ability to meet 3A's affordability, adaptability, and acceptability criteria. As a result, DCP emerges as one of the most promising challengers for green chemistry and the zero-waste idea.

Removal of Hexavalent Chromium by using Biomass (바이오매스를 이용한 6가 크롬의 제거)

  • Park, Donghee;Park, Jong Moon
    • Korean Chemical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.107-113
    • /
    • 2006
  • Not only Cr(VI) is very toxic, but also it is a major pollutant in soil and groundwater. Thus Cr(VI)-containing wastewater must be treated before being discharged into the environments. Recently, biosorption technology using abundant biomass has been considered as an innovative one for removing Cr(VI) from aqueous solution. In this review article, current research and future works on Cr(VI) biosorption were widely described. Particularly, the removal mechanism of Cr(VI) by biomass was described in detail, which has been misunderstood by many researchers until now.

Comparison of Biosorption of N, P ions by Zygnema sterile and Lepocinclism textra Biomass under Irradiation Period in High Rate Algae Biomass Reactor (고율 조류 바이오매스 반응기에서 조사시간으로 본 Zygnema sterile과 Lepocinclism textra 바이오매스의 질소, 인 이온 생흡착의 비교)

  • Kong, Surk-Key
    • Journal of environmental and Sanitary engineering
    • /
    • v.22 no.4
    • /
    • pp.11-21
    • /
    • 2007
  • The recent investigation indicates that the kinetic constants for anionic ions were merely the result of ion exchange between the algae cell wall surface and the anionic ion. In this study, Zygnema sterile and Lepocinclism textra, floating flagellate alga as the dominant algae strains, were cultivated using HRABR(High Rate Algae Biomass Reactor) and the cultivation conditions were 24 hrs. and 12 hrs. irradiation and it was studied how this algal biomass acts on the biosorption mechanism of anionic N and P. Results are as follows : 1. Calculating the specific chl.-a growth rate using Michaelis-Menten model, the one of 24hrs. irradiation was about 55 times higher than the one of 12 hrs. irradiation 2. Calculating the specific chl.-a growth rate using Kuo model, the one of 24 hrs. irradiation was about 2.26 times higher than the one of 12 hrs. irradiation 3. Langmuir model can apply to the biosorption mechanism of anionic N and P in HRABP. 4. Regarding the chlorophyll-a concentration as unit weight of sorbent, the ion selectivity coefficients for N and P are as follows : $(NH_3-N)+(NO_3-N)$ in 24 hrs. irradiation ; 44.984 $PO_4-P$ in 24 hrs. irradiation ; 24.237 $(NH_3-N)+(NO_3-N)$ in 12 hrs. irradiation ; 1432.851 $PO_4-P$ in 12 hrs. irradiation ; 599.076