• Title/Summary/Keyword: Bioslurping

Search Result 2, Processing Time 0.014 seconds

Enhanced Bioslurping System for Remediation of Petroleum Contaminated Soils (Enhanced Bioslurping system을 이용한 유류오염 토양의 복원)

  • Kim Dae-Eun;Seo Seung-Won;Kim Min-Kyoung;Kong Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.2
    • /
    • pp.35-43
    • /
    • 2005
  • Bioslurping combines the three remedial approaches of bioventing, vacuum-enhanced free-product recovery, and soil vapor extraction. Bioslurping is less effective in tight (low-permeability) soils. The greatest limitation to air permeability is excessive soil moisture. Optimum soil moisture is very soil-specific. Too much moisture can reduce air permeability of the soil and decrease its oxygen transfer capability. Too little moisture will inhibit microbial activity. So Modified Fenton reaction as chemical treatment which can overcome the weakness of Bioslurping was experimented for simultaneous treatment. Although the diesel removal efficiency of SVE process increased in proportion to applied vacuum pressure, SVE process was difficulty to remediation quickly semi- or non-volatile compounds absorbed soil strongly. And SVE process had variation of efficiency with distance from the extraction well and depth a air flow form of hemisphere centering around the well. Below 0.1 % hydrogen peroxide shows the potential of using hydrogen peroxide as oxygen source but the co-oxidation of chemical and biological treatment was impossible because of the low efficiency of Modified Fenton reaction at 0.1 % (wt) hydrogen peroxide. NTA was more efficiency than EDTA as chelating agent and diesel removal efficiency of Modified Fenton reaction increased in proportion to hydrogen peroxide concentration. Hexadecane as typical aliphatic compound was removed less than Toluene as aromatic compound because of its structural stability in Modified Fenton reaction. What minimum 10% hydrogen peroxide concentration has good remediation efficiency of diesel contaminated groundwater may show the potential use of Modified Fenton reaction after bioslurping treatment.

토양오염 유발시설의 오염현황 조사 및 오염토양 복원 방안 연구

  • 노성혁;백형환;신정남
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.344-347
    • /
    • 2003
  • 본 조사를 통해 토양오염유발시설 중 유류 유출사고가 잦은 주유소에서의 오염현황 조사방법과 오염토양에 대한 적정한 정화기법을 제시하고자 하였다. 오염현황 조사결과, 지층구조 는 전반적으로 Clay로 구성되어 있으나 오염토양 주변은 비교적 투수도와 통기성이 우수한 Silty Sand층을 나타내고 있었다. 본 주유소의 경우 주유기 주변(상층부)과 지하유류저장탱크 주변(수직분포)에 오염이 분포되어 있고, 오염원인은 주유기의 배관 파손 및 결함에 의해 발생한 것으로 예상된다. 본 조사지역에 대한 정화기법으로는 토양증기추출기술(SVE)과 불포화대를 생물학적으로 복원할 수 있는 바이오벤팅기술을 결합시킨 Bioslurping이 효과적일 것으로 평가된다. 또한 Bioslurry injection treatment를 병행하여 효과적으로 고농도의 오염토양을 처리하는 것이 바람직할 것으로 판단된다.

  • PDF