• Title/Summary/Keyword: Bioremoval

Search Result 6, Processing Time 0.024 seconds

Removal of Heavy Metals by Cladophora sp. in Batch Culture: The Effect of Wet-mixed Solidified Soil (loess) on Bioremoval Capacities

  • Kim, Jin-Hee;Lee, Kyung-Lak;Kim, Sook-Chan;Kim, Han-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.4
    • /
    • pp.537-545
    • /
    • 2007
  • The heavy metal removal capacity of filamentous green alga Cladophora sp. cultured together with wet-mixed solidified soil (loess) was tested. A Cladophora sp. was cultured for 5d, with added Chu No. 10 medium, in stream water contaminated by high concentration of heavy metals from a closed mine effluent. Heavy metal ion concentrations of the medium and in algal tissue were measured every day during the experiment. Dissolved metals (Al, Cd, Cu, Fe, Mn, Zn) in medium were rapidly removed (over 90% elimination) within 1-2d when alga and loess were added. Dissolved heavy metals dropped by only 10% when algae were cultured without loess. The Cladophora sp. accumulated much more heavy metals when cultured with loess than when the alga was cultured alone. Cladophora sp. exhibited a maximum uptake capacity for Al ($17,000{\mu}g^{-1}$ algal dry weight). The metal bioremoval capacities of the algae were in the order Al, Fe, Cu, Mn, Zn and Cd. The heavy metal removal capacity of Cladophora sp. showed significant increases when wet-mixed solidified soil was added to culture media.

Bioremoval of Cadmium(II), Nickel(II), and Zinc(II) from Synthetic Wastewater by the Purple Nonsulfur Bacteria, Three Rhodobacter Species

  • Jin Yoo;Eun-Ji Oh;Ji-Su Park;Deok-Won Kim;Jin-Hyeok Moon;Deok-Hyun Kim;Daniel Obrist;Keun-Yook Chung
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.640-648
    • /
    • 2023
  • The purpose of this study was to determine the inhibitory effect of heavy metals [Cd(II), Ni(II), and Zn(II)] on the growth of Rhodobacter species (Rhodobacter blasticus, Rhodobacter sphaeroides, and Rhodobacter capsulatus) and their potential use for Cd(II), Ni(II), and Zn(II) bioremoval from liquid media. The presence of toxic heavy metals prolonged the lag phase in growth and reduced biomass growth for all three Rhodobacter species at concentrations of Cd, Ni, and Zn above 10 mg/L. However, all three Rhodobacter species also had a relatively high specific growth rate against each toxic heavy metal stress test for concentrations below 20 mg/L and possessed a potential bioaccumulation ability. The removal efficiency by all strains was highest for Cd(II), followed by Ni(II), and lowest for Zn(II), with the removal efficiency of Cd(II) by Rhodobacter species being 66% or more. Among the three strains, R. blasticus showed a higher removal efficiency of Cd(II) and Ni(II) than R. capsulatus and R. sphaeroides. Results also suggest that the bio-removal processes of toxic heavy metal ions by Rhodobacter species involve both bioaccumulation (intracellular uptake) and biosorption (surface binding).

Distribution of heavy metal contamination in soils and sediments in the vicinity of the Hwacheon Au-Ag-Pb-Zn mine

  • Lee Sung-Eun;Lee Jin-Soo;Chon Hyo-Taek
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.529-531
    • /
    • 2003
  • In order to investigate the level of heavy metal contamination and the seasonal variation of metal concentrations in soils and sediments influenced by past mining activities, tailings, soil and sediment samples were collected from the Hwacheon mine in Korea. The main pollution sources in this mine site are suggested as tailings and mine waste rocks. Elevated levels of Cd, Pb and Zn were found in soils and sediments. In a study of seasonal variation on the heavy metals in soils and sediments, heavy metals were higher enriched collected from before rainy season ($2^{nd}$ sampling) than after rainy season ($1^{st}$ sampling). Also, in order to estimate the microbial effects on Cd speciation in sediments, bacteria which can adsorb Cd was isolated and Cd adsorption characteristics of isolated bacteria in Cd solution was evaluated. The Cd bioremoval efficiency in Cd solution (5 ppm) by bacteria was more than $90\%$. Bioremoval efficiency in single metal solution was higher than that in mixed metal solution of Pb and Zn.

  • PDF

Integrated Whole-Cell Biocatalysis for Trehalose Production from Maltose Using Permeabilized Pseudomonas monteilii Cells and Bioremoval of Byproduct

  • Trakarnpaiboon, Srisakul;Champreda, Verawat
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.8
    • /
    • pp.1054-1063
    • /
    • 2022
  • Trehalose is a non-conventional sugar with potent applications in the food, healthcare and biopharma industries. In this study, trehalose was synthesized from maltose using whole-cell Pseudomonas monteilii TBRC 1196 producing trehalose synthase (TreS) as the biocatalyst. The reaction condition was optimized using 1% Triton X-100 permeabilized cells. According to our central composite design (CCD) experiment, the optimal process was achieved at 35℃ and pH 8.0 for 24 h, resulting in the maximum trehalose yield of 51.60 g/g after 12 h using an initial cell loading of 94 g/l. Scale-up production in a lab-scale bioreactor led to the final trehalose concentration of 51.91 g/l with a yield of 51.60 g/g and productivity of 4.37 g/l/h together with 8.24 g/l glucose as a byproduct. A one-pot process integrating trehalose production and byproduct bioremoval showed 53.35% trehalose yield from 107.4 g/l after 15 h by permeabilized P. moteilii cells. The residual maltose and glucose were subsequently removed by Saccharomyces cerevisiae TBRC 12153, resulting in trehalose recovery of 99.23% with 24.85 g/l ethanol obtained as a co-product. The present work provides an integrated alternative process for trehalose production from maltose syrup in bio-industry.

Heavy Metals Biosorption from Aqueous Solution by Endophytic Drechslera hawaiiensis of Morus alba L. Derived from Heavy Metals Habitats

  • El-Gendy, Mervat Morsy Abbas Ahmed;Hassanein, Naziha M.;El-Hay Ibrahim, Hussein Abd;El-Baky, Doaa H. Abd
    • Mycobiology
    • /
    • v.45 no.2
    • /
    • pp.73-83
    • /
    • 2017
  • The ability of dead cells of endophytic Drechslera hawaiiensis of Morus alba L. grown in heavy metals habitats for bioremoval of cadmium ($Cd^{2+}$), copper ($Cu^{2+}$), and lead ($Pb^{2+}$) in aqueous solution was evaluated under different conditions. Whereas the highest extent of $Cd^{2+}$ and $Cu^{2+}$ removal and uptake occurred at pH 8 as well as $Pb^{2+}$ occurred at neutral pH (6-7) after equilibrium time 10 min. Initial concentration 30 mg/L of $Cd^{+2}$ for 10 min contact time and 50 to 90 mg/L of $Pb^{2+}$ and $Cu^{2+}$ supported the highest biosorption after optimal contact time of 30 min achieved with biomass dose equal to 5 mg of dried died biomass of D. hawaiiensis. The maximum removal of $Cd^{2+}$, $Cu^{2+}$, and $Pb^{2+}$ equal to 100%, 100%, and 99.6% with uptake capacity estimated to be 0.28, 2.33, and 9.63 mg/g from real industrial wastewater, respectively were achieved within 3 hr contact time at pH 7.0, 7.0, and 6.0, respectively by using the dead biomass of D. hawaiiensis compared to 94.7%, 98%, and 99.26% removal with uptake equal to 0.264, 2.3, and 9.58 mg/g of $Cd^{2+}$, $Cu^{2+}$, and $Pb^{2+}$, respectively with the living cells of the strain under the same conditions. The biosorbent was analyzed by Fourier Transformer Infrared Spectroscopy (FT-IR) analysis to identify the various functional groups contributing in the sorption process. From FT-IR spectra analysis, hydroxyl and amides were the major functional groups contributed in biosorption process. It was concluded that endophytic D. hawaiiensis biomass can be used potentially as biosorbent for removing $Cd^{2+}$, $Cu^{2+}$, and $Pb^{2+}$ in aqueous solutions.

Uranium Removal by D. baculatum and Effects of Trace Metals (국내 지하수에 서식하는 바쿨라텀(baculatum)에 의한 용존우라늄 제거 및 미량 중금속 원소들의 영향)

  • Lee, Seung-Yeop;Oh, Jong-Min;Baik, Min-Hoon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.83-90
    • /
    • 2011
  • Removal of dissolved uranium by D. baculatum, a sulfate-reducing bacterium, and effects of trace metals such as manganese, copper, nickel, and cobalt were investigated. Total concentrations of dissolved uranium and trace metals were used by $50\;{\mu}M$ and $200\;{\mu}M$, respectively. Most dissolved uranium decreased up to a non-detectable level (< 10 ppb) MS during the experiments. Most of the heavy metals did nearly not affect the bioremoval rates and amounts of uranium, but copper restrained microbial activity. However, it is found that dissolved uranium rapidly decreased after 2 weeks, showing that the bacteria can overcome the copper toxicity and remove the uranium. It is observed that nickel and cobalt were readily coprecipitated with biogenic mackinawite.