• Title/Summary/Keyword: Bioproduct

Search Result 66, Processing Time 0.028 seconds

Integrated Whole-Cell Biocatalysis for Trehalose Production from Maltose Using Permeabilized Pseudomonas monteilii Cells and Bioremoval of Byproduct

  • Trakarnpaiboon, Srisakul;Champreda, Verawat
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.8
    • /
    • pp.1054-1063
    • /
    • 2022
  • Trehalose is a non-conventional sugar with potent applications in the food, healthcare and biopharma industries. In this study, trehalose was synthesized from maltose using whole-cell Pseudomonas monteilii TBRC 1196 producing trehalose synthase (TreS) as the biocatalyst. The reaction condition was optimized using 1% Triton X-100 permeabilized cells. According to our central composite design (CCD) experiment, the optimal process was achieved at 35℃ and pH 8.0 for 24 h, resulting in the maximum trehalose yield of 51.60 g/g after 12 h using an initial cell loading of 94 g/l. Scale-up production in a lab-scale bioreactor led to the final trehalose concentration of 51.91 g/l with a yield of 51.60 g/g and productivity of 4.37 g/l/h together with 8.24 g/l glucose as a byproduct. A one-pot process integrating trehalose production and byproduct bioremoval showed 53.35% trehalose yield from 107.4 g/l after 15 h by permeabilized P. moteilii cells. The residual maltose and glucose were subsequently removed by Saccharomyces cerevisiae TBRC 12153, resulting in trehalose recovery of 99.23% with 24.85 g/l ethanol obtained as a co-product. The present work provides an integrated alternative process for trehalose production from maltose syrup in bio-industry.

Trends in Canadian Dietary Supplements Enhanced with Female Hormones Required in Response to the COVID-19 Pandemic (코로나19 (COVID-19) 팬데믹에 대응하여 요구되는 여성호르몬이 강화된 캐나다산 식이 보충제의 동향)

  • Shim, Youn Young;Reaney, Martin J.T.;Lee, Hak Sung;Kim, Hye-Jin
    • Journal of the FoodService Safety
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • As one of the post-COVID-19 response strategies, representative processed products derived from the natural plant material flaxseed and a dietary supplement fortified with female hormones (estrogens) were developed in Canada, an eco-friendly country was introduced. These products were: 1) flaxseed oil to help maintain cognitive and immune function, 2) Lignan50, a substance with effects similar to estrogen, a female hormone, 3) XanFlax, a thickener for confectionery/baking and egg substitute, 4) MediFlax, a constipation reliever, 5) SesaFlax, which has a fragrance similar to sesame, 6) Linusorb, which is effective for its pharmaceutical anti-inflammatory/anti-oxidation and anti-aging properties, and 7) LinuLyte, a water/electrolyte supplement containing high dietary fiber. It is expected that these dietary products will help maintain and promote health as part of a response to the COVID-19 pandemic.

Isolation of Novel Alkalophilic Bacillus alcalophilus subsp. YB380 and the Characteristics of Its Yeast Cell Wall Hydrolase

  • Yeo, Ik-Hyun;Han, Suk-Kyun;Yu, Ju-Hyun;Bai, Dong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.5
    • /
    • pp.501-508
    • /
    • 1998
  • An alkalophilic mi.croorganism (strain YB380), which produces yeast cell wall hydrolase extracellulary, was isolated from Korean soil. The rod-shaped cells were 0.3~0.4 by 2~4${\mu}{\textrm}{m}$ long, motile, aerobic, gram-positive, and spore-forming. The color of the colony was light yellow. The temperature range for growth at pH 9.0 was 25 to $45{\circ}C, with optimum growth at $35{\circ}C. The pH range for growth at $35{\circ}C was 8 to 11 with an optimum pH of 9.0. Therefore, the strain YB380 is an obligate alkalophile. The 16S rRNA of strain YB380 has a 99% sequence similarity with that of Bacillus alcalophilus. On the basis of physiological properties, cell wall fatty acid composition, and phylogenetic analysis, we propose that the isolated strain is Bacillus alcalophilus. The yeast cell wall hydrolase from Bacillus alcalophilus subsp. YB380 has been purified and partially characterized. The molecular weight was estimated to be 27,000 daltons with an optimum temperature and pH of $60{\circ}C and 9.0, respectively. The N-terminal amino acid sequence of the enzyme was analyzed as Gln- Thr- Val- Pro- Trp- Gly- Ile- Asn- Arg- Val.

  • PDF

Acute and 13-week subchronic toxicological evaluations of turanose in mice

  • Chung, Joo-Yeon;Lee, Jihye;Lee, Daeyeon;Kim, Eunju;Shin, Jae-Ho;Seok, Pu Reum;Yoo, Sang-Ho;Kim, Yuri
    • Nutrition Research and Practice
    • /
    • v.11 no.6
    • /
    • pp.452-460
    • /
    • 2017
  • BACKGROUD/OBJECTIVES: Turanose, ${\alpha}$-D-glucosyl-($1{\rightarrow}3$)-${\alpha}$-D-fructose, is a sucrose isomer which naturally exists in honey. To evaluate toxicity of turanose, acute and subchronic oral toxicity studies were conducted with ICR mice. MATERIALS AND METHODS: For the acute oral toxicity study, turanose was administered as a single oral dose [10 g/kg body weight (b.w.)]. In the subchronic toxicity study, ICR mice were administered 0, 1.75, 3.5, and 7 g/kg b.w. doses of turanose daily for 13 weeks. RESULTS: No signs of acute toxicity, including abnormal behavior, adverse effect, or mortality, were observed over the 14-day study period. In addition, no changes in body weight or food consumption were observed and the median lethal dose (LD50) for oral intake of turanose was determined to be greater than 10 g/kg b.w. General clinical behavior, changes in body weight and food consumption, absolute and relative organ weights, and mortality were not affected in any of the treatment group for 13 weeks. These doses also did not affect the macroscopic pathology, histology, hematology, and blood biochemical analysis of the mice examined. CONCLUSION: No toxicity was observed in the acute and 13-week subchronic oral toxicology studies that were conducted with ICR mice. Furthermore, the no-observed-adverse-effect level is greater than 7 g/kg/day for both male and female ICR mice.

R & D Trend of The Traditional Fermented Foods in Korea (우리나라 전통발효식품(傳統醱酵食品)의 연구개발동향(硏究開發動向))

  • Lim, Bun-Sam
    • Journal of the Korean Society of Food Culture
    • /
    • v.4 no.3
    • /
    • pp.265-269
    • /
    • 1989
  • Korean traditional fermented foods have been diversely developed to enhance taste and flavor while preserving them on a long term basis. For those furthur utilization and development, more efforts to commercialize these products focusing to the consumer's needs should be proceded. In that sence, the fermented foods might be classified into the bioproduct (biofood) and the sterilized. The former defines the non-sterilized such as Kimchi, Jeotkal (fermented fishes), and Jang (fermented soybean products) so as to include various kinds of microorganisms, enzymes and the unknown bioproducts, while the latter defines the sterilized such as soysauce and vinegars proper to the commercialization. In this paper, present R & D status has been reviewed laying stress on Kimchi, Jeotkal and Jang and the mixed fermentation system by the microflora was suggested as a Korean style model for the future R & D direction in these fields.

  • PDF

Current status and prospect of novel food materials developed by using biotechnology (바이오기술을 이용한 식품소재 개발의 국내·외 현황 및 전망)

  • Yoo, Sang-Ho
    • Food Science and Industry
    • /
    • v.52 no.2
    • /
    • pp.171-187
    • /
    • 2019
  • Novel food materials can be produced based on biotechnology such as genetic recombination, microbial fermentation, and enzymatic engineering by utilizing living organisms such as animal, plant, and microorganism or by applying the enzymes isolated from them. Especially, exploration and development of novel prebiotics and probiotics attracted great attention worldwide in the food industry, of which the research and industrial trends in food biotechnology field are promoting the production of next generation sweeteners and proliferation of beneficial bacteria in gastrointestinal tract. Development and commercialization of novel food materials by domestic bioprocessing technology have been sluggish due to the GMO/LMO food safety issues. Meanwhile, the US and EU do not perceive badly about gene manipulation technology, and the research is most active in the fields of crops and GMMs, respectively. Genetic scissors, which are considered as next generation technology, are notable since foreign genes do not remain in final products.

Improvement in Storage Stability of Danmooji (Salted Radish) by High Hydrostatic Pressure and Heat Treatment (초고압과 열처리를 통한 단무지의 저장성 향상)

  • Kim, Byong-Ki;Hong, Kwan-Pyo;Park, Ji-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.132-138
    • /
    • 1998
  • This study was conducted to evaluate the storage stability of danmooji(salted radish) treated with high hydrostatic pressure $(300{\sim}686\;MPa)\;and\;heat\;(55^{\circ}C)$. Danmooji pressurized at 500 MPa and 686 MPa for 5 min showed $4{\sim}6log-cycle$ reductions in total microorganism, while danmooji heated at $55^{\circ}C\;for\;2\;hr\;showed\;3{\sim}5log-cycle$ reductions. However, danmooji pressurized at 300 MPa for 5 min showed a 2 log-cycle reduction, indicating that pressurization at lower than 300 MPa is insufficient for sterilization. After pressurized at 300 MPa, 500 MPa and 686 MPa for 5 min, pectinesterase (PE) activity of danmooji was increased by approximately 35%, 76% and 64%, respectively; and polygalacturonase (PG) activity of danmooji was increased by 109%. 163% and 120%, respectively. After heated at $55^{\circ}C$ for 2 hr, PE and PG activities of danmooji were increased by 18% and 200%, respectively. This indicates that PE in danmooji was more activated bypressure than heat, while PG was mostly activated by heat. Pressurized and heat-treated danmooji had higher hardness than control and maintained its hardness during storage at $30^{\circ}C$.

  • PDF

Production of Levulinic Acid from Gelidium amansii Using Two Step Acid Hydrolysis (우뭇가사리로부터 레불린산 생산공정을 위한 2단 산 가수분해)

  • Kim, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.438-442
    • /
    • 2013
  • The study of bioproduct production from inexpensive biomass such as marine biomass has recently attracted considerable attention. Because, marine biomass which compared to land biomass, it can be grown rapidly and is easily cultivated without the need for expensive equipment. In addition, the carbohydrate contents are similar or higher than land biomass such as woody biomass and can be easily converted to chemicals through proper chemical processes. In the production of various biochemicals from marine biomass, levulinic acid is a highly versatile chemical with numerous industrial uses and has the potential to become a commodity chemical. It can be used as a raw material for resins, plasticizers, textiles, animal feed, coatings and antifreeze. In this study, experiments were carried out to determine the optimum conditions of temperature, acid concentration and reaction time for production of levulinic acid from marine biomass, Gelidium amansii, using two-step treatment. In the first hydrolysis step, solid-state cellulose which was used to produce ethanol by fermentation and liquid-state galactose which used to produce bioproduct such as levulinic aicd were obtained through acid soaking. In the second hydrolysis step, the liquid-state galactose was converted into levulinic acid via a high-temperature reaction in a batch reactor. As a result, the overall production yield of Gelidium amansii to levulinic acid in the two-step acid hydrolysis was approximately 20.6% on the initial biomass basis.

Seasonal Changes in the Microbial Communities on Lettuce (Lactuca sativa L.) in Chungcheong-do, South Korea

  • Woojung Lee;Min-Hee Kim;Juyeon Park;You Jin Kim;Eiseul Kim;Eun Jeong Heo;Seung Hwan Kim;Gyungcheon Kim;Hakdong Shin;Soon Han Kim;Hae-Yeong Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.219-227
    • /
    • 2023
  • Lettuce is one of the most consumed vegetables worldwide. However, it has potential risks associated with pathogenic bacterial contamination because it is usually consumed raw. In this study, we investigated the changes in the bacterial community on lettuce (Lactuca sativa L.) in Chungcheong-do, South Korea, and the prevalence of foodborne pathogens on lettuce in different seasons using 16S rRNA gene-based sequencing. Our data revealed that the Shannon diversity index showed the same tendency in term of the number of OTUs, with the index being greatest for summer samples in comparison to other seasons. Moreover, the microbial communities were significantly different between the four seasons. The relative abundance of Actinobacteriota varied according to the season. Family Micrococcaceae was most dominant in all samples except summer, and Rhizobiaceae was predominant in the microbiome of the summer sample. At the genus level, the relative abundance of Bacillus was greatest in spring samples, whereas Pseudomonas was greatest in winter samples. Potential pathogens, such as Staphylococcus and Clostridium, were detected with low relative abundance in all lettuce samples. We also performed metagenome shotgun sequencing analysis on the selected summer and winter samples, which were expected to be contaminated with foodborne pathogens, to support 16S rRNA gene-based sequencing dataset. Moreover, we could detect seasonal biomarkers and microbial association networks of microbiota on lettuce samples. Our results suggest that seasonal characteristics of lettuce microbial communities, which include diverse potential pathogens, can be used as basic data for food safety management to predict and prevent future outbreaks.