• Title/Summary/Keyword: Bioproduct

Search Result 66, Processing Time 0.029 seconds

Chiral Separation of Aromatic Acids by Capillary Electrophoresis Using HP $\beta$-Cyclodextrin as the Chiral Selector

  • La, Soo-Kie;Kim, Ji-Young;Kim, Jung-Han;Kim, Kyoung-Rae
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.399.2-399.2
    • /
    • 2002
  • Capillary electrophoretic direct chiral separation method is described for the determination of the absolute configuration of chiral aromatic acids, The enantiomeric separation was achieved by capillary electrophoresis using HP $\beta$-cyclodextrin (CD) as the chiral selector. The effect of CD concentration was investigated to optimize the chiral separation and resolution. When applied to microbial culture fluid. the present method allowed positive identification of chiral aromatic acids and their chirality as well.

  • PDF

Enantiomeric Profiling Analysis of NSAIDs by Capillary Electrophoresis Using TM $\beta$-Cyclodextrin as the Chiral Selector

  • Kim, Ji-Young;La, Sookie;Kim, Jung-Han;Kim, Kyoung-Rae
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.400.1-400.1
    • /
    • 2002
  • Because of the differences in pharmacological properties between enantiomers of chiral acidic non-steroidal antiinflammatory drugs (NSAIDs) in human body. accurate determinations of their optical purities have been in great need. An efficient capillary electrophoretic (CE) profiling method was developed for the enantioseparation of NSAIDs. Capillary electrophoretic conditions were optimized using TM$\beta$-cyclodextrin as the chiral selectors under MES buffer. (omitted)

  • PDF

Linkage Structure Analysis of Barley and Oat $\beta$-Glucans by High Performance Anion Exchange Chromatography

  • Ryu, Je-Hoon;Yoo, Dong-Hyung;Lee, Byung-Hoo;Lee, Su-Yong;Joo, Mi-Hyun;Yoo, Sang-Ho
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.271-274
    • /
    • 2009
  • Cereal $\beta$-glucans, linked essentially by mixed $\beta$-(1,4/1,3) glycosidic bonds, were extracted, purified, and structurally identified. Previously chemical structure of barley $\beta$-glucans was characterized from 3 varieties of 'Gang', 'Ohl', and 'Gwangan', and the (1,4)/(1,3) linkage ratio of the $\beta$-glucans was identical. In this study, $\beta$-glucans from 1 barley ('Chal') and 3 oat ('Ohl', 'Samhan', and 'Donghan') varieties were structurally scrutinized, and the linkage pattern of total 7 cereal $\beta$-glucans was compared. The amount of 2 major 3-O-$\beta$-cellobiosyl-D-glucose (DP3) and 3-O-$\beta$-cellotriosyl-D-glucose (DP4) from barley and oat accounted for only 66.6-73.3 and 68.12-81.89% of water-extractable $\beta$-glucan fractions, and the (1,4)/(1,3) linkage ratios of both barley and oat $\beta$-glucans were within very narrow range of 2.27-2.31 and 2.38-2.39, respectively, among the cultivars tested. Structural difference in the cereal $\beta$-glucans was evident when DP3:DP4 ratio in the $\beta$-glucan structure was compared. As a result, this ratio was significantly greater for barley $\beta$-glucan (2.26-2.74) than for oat (1.54-1.66). Chal-B had the greatest DP3 to DP4 ratio among the samples, which in turn reflected the least amount of (1,4)-linkages.

알칼리 내성 Bacillus sp. YA-14 유래의 중복 Promotor를 이용한 재조합 Plasmid로부터의 Pectate Iyase의 발현

  • Park, Hee-Kyoung;Hahm, Byoung-Kwon;Yu, Ju-Hyun;Bai, Dong-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.6
    • /
    • pp.571-579
    • /
    • 1997
  • For the overproduction of pectate lyase (PL), the recombinant plasmid pl2BS fl which has strong promoter from alkali-tolerent Bacillus sp. YA-14 was used. In order to overexpress the pectate lyase by the action of overlapping strong promoter in pl2BS$\Delta$fl, 1.6 kb of PL gene was inserted into pl2BS$\Delta$fl to form pl2BS$\delta$f1-PL and the enzyme was expressed. But decreased expression efficiency of the PL gene was observed and it was due to the presence of the transcription terminator region on the upstream of the PL gene. The transcription terminator of the PL gene in pl2BS$\delta$f1-PL was removed and the resulting plasmid p12BS$\Delta$fl$\Delta$PL was formed. Bacillus subtilis 207-25 harboring the recombinant plasmid, p12BS$\Delta$fl$\Delta$PL, revealed increased expression efficiency with chloramphenicol induction when cat-86 was used as a reporter gene.

  • PDF

Initial Ignition Time and Calorific Value Enhancement of Briquette with Added Pine Resin

  • Gustan PARI;Lisna EFIYANTI;Saptadi DARMAWAN;Nur Adi SAPUTRA;Djeni HENDRA;Joseph ADAM;Alfred INKRIWANG;Rachman EFFENDI
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.3
    • /
    • pp.207-221
    • /
    • 2023
  • The increasing demand for clean energy requires considerable effort to find alternative energy sources, such as briquettes. This research aims to develop a charcoal briquette with added pine resin (API) that has excellent combustion speed and distinctive aroma. Briquettes are composed of charcoal, pine resin (concentration: 0%-30%), and starch (up to 7%). They are produced in several stages, including coconut shell pyrolysis in conventional combustion, to obtain charcoal for the briquette precursor. Briquette compaction is conducted by mixing and densifying the charcoal, pine resin, and starch using a hydraulic press for 3 min. The hydraulic press has a total surface area and diameter of 57.7 cm2 and 3.5 cm, respectively. The briquettes are dried at different temperatures, reaching 70℃ for 24 h. The study results show that the briquettes have a thickness and diameter of up to 2 and 3.5 cm, respectively; moisture of 2.18%-2.62%; ash of 11.61%-13.98%; volatile matter of 27.15%-51.74%; and fixed carbon content of 40.24%-59.46%. The compressive strength of the briquettes is 186-540 kg/cm2. Their calorific value is 5,338-6,120 kcal/kg, combusting at a high speed of 0.15-0.40 s. The methoxy naphthalene, phenol, benzopyrrole, and lauryl alcohol; ocimene, valencene, and cembrene are found in the API. The API briquette has several chemical compounds, such as musk ambrette, ocimene, sabinene, limonene, 1-(p-cumenyl) adamantane, butane, and propanal, which improve aroma, drug application, and fuel production. Accordingly, API briquettes have considerable potential as an alternative energy source and a health improvement product.