• Title/Summary/Keyword: Biometric monitoring

Search Result 63, Processing Time 0.019 seconds

Stand-alone Real-time Healthcare Monitoring Driven by Integration of Both Triboelectric and Electro-magnetic Effects (실시간 헬스케어 모니터링의 독립 구동을 위한 접촉대전 발전과 전자기 발전 원리의 융합)

  • Cho, Sumin;Joung, Yoonsu;Kim, Hyeonsu;Park, Minseok;Lee, Donghan;Kam, Dongik;Jang, Sunmin;Ra, Yoonsang;Cha, Kyoung Je;Kim, Hyung Woo;Seo, Kyoung Duck;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.86-92
    • /
    • 2022
  • Recently, the bio-healthcare market is enlarging worldwide due to various reasons such as the COVID-19 pandemic. Among them, biometric measurement and analysis technology are expected to bring about future technological innovation and socio-economic ripple effect. Existing systems require a large-capacity battery to drive signal processing, wireless transmission part, and an operating system in the process. However, due to the limitation of the battery capacity, it causes a spatio-temporal limitation on the use of the device. This limitation can act as a cause for the disconnection of data required for the user's health care monitoring, so it is one of the major obstacles of the health care device. In this study, we report the concept of a standalone healthcare monitoring module, which is based on both triboelectric effects and electromagnetic effects, by converting biomechanical energy into suitable electric energy. The proposed system can be operated independently without an external power source. In particular, the wireless foot pressure measurement monitoring system, which is rationally designed triboelectric sensor (TES), can recognize the user's walking habits through foot pressure measurement. By applying the triboelectric effects to the contact-separation behavior that occurs during walking, an effective foot pressure sensor was made, the performance of the sensor was verified through an electrical output signal according to the pressure, and its dynamic behavior is measured through a signal processing circuit using a capacitor. In addition, the biomechanical energy dissipated during walking is harvested as electrical energy by using the electromagnetic induction effect to be used as a power source for wireless transmission and signal processing. Therefore, the proposed system has a great potential to reduce the inconvenience of charging caused by limited battery capacity and to overcome the problem of data disconnection.

Verification of accuracy detection of the cows estrus using biometric information measuring device (생체정보 측정장치를 활용한 젖소 발정탐지의 정확도 검증)

  • Yang, Ka-Young;Woo, Sae-Mee;Kwon, Kyeong-Seok;Choi, Hee-Chul;Jeon, Jung-Hwan;Lee, Jun-Yeob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.652-657
    • /
    • 2018
  • Breeding control in a farm is a very important factor affecting milk productivity. Breeding management is important for the early detection of estrus, and reliable, automatic, more accurate, and faster monitoring of the timing of dairy cows is essential for farmers. This study measured the accuracy of estrus using the estrus indications, changes in activities, rumination activities, ruminal temperature, and pH. The biomedical information device S1 used in this study provided an estrus notice using the rumen temperature, pH, cow activities, and number of drinking estimations, which were inserted in the rumen through the oral route. The S2 device was used in the estrus notice for the rumen activities and cow activities. The data collected on the instrument were collected at intervals of 2 hours per day at the reference days (RD: -7~-3, +7~+ 3) +2), 7 days before insemination, and 7 days after insemination. The activities of the S1 device used in this paper increased with increasing number of insemination days (-1: $12.5{\pm}1.03/day$; 0: $12.9{\pm}1.73/day$) compared to the reference day (RD: $10.2{\pm}1.0/day$). The activities of the S2 device was also found to increase from the reference day to the insemination day (0: $63.0{\pm}3.66$) compared to the reference day (RD: $40.3{\pm}2.68$). The number of daily drinks in S1 decreased from the reference day (RD: $5.9{\pm}0.89/day$) to before the insemination day (-2: $5.6{\pm}0.98$; -1: $5.7{\pm}0.96$); +2: $6.0{\pm}0.73$). The number of daily drinks on the insemination day (0: $6.3{\pm}0.86$; +2: $6.0{\pm}0.73$) was similar to the reference day. The number of daily rumination in S2 decreased from the reference day (RD: $493.8{\pm}10.92$) to the insemination day (-1: $390.2{\pm}13.36$; 0: $354.1{\pm}16.71$).

Benthic Macroinvertebrates Inhabiting Estuaries in Sea Area and Relationship with Major Drivers of Change in Estuaries (해역별 하구에 서식하는 저서성 대형무척추동물 현황과 하구 서식지 주요 변화 동인과의 관계)

  • Lim, Sung-Ho;Jung, Hyun-Chul;Lee, Min-Hyuk;Lee, Sang-Wook;Moon, Jeong-Suk;Kwon, Soon-Hyun;Won, Du-Hee
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.1
    • /
    • pp.10-18
    • /
    • 2022
  • This study analyzed the relationship between the community structure of benthic macroinvertebrates and habitat changes in open estuaries among the sites included in the national estuary monitoring program. The estuary survey was conducted under the "Guidelines for Investigation and Evaluation of Biometric Networks" and classified by sea area, 80 places in the East Sea, 102 places in the South Sea, and 19 places in the West Sea were investigated. In a total of 201 open estuaries, benthic macroinvertebrates were identified with 4 phyla, 9 classes, 41 orders, 139 families, 269 species and 196 species in the East Sea, 182 species in the South Sea, and 90 species in the West Sea. The highest population densities were Insecta in the East Sea, the Malacostraca in the South Sea, and the Annelida in the West Sea. Through SIMPER analysis, species contributing to the similarity of benthic macroinvertebrates communities in each sea area were identified. Some species greatly influenced the similarity of clusters. The benthic community in the East Sea was affected by the salinity, so the contribution rate of freshwater species was high. On the other hand, the benthic communities of the South and West Seas showed species compositions are influenced by the substrate composition. As results, the benthic macroinvertebrate community in Korean estuaries was impacted by salinity and substrate simultaneously, and the close relationship with geographical distance was not observed. The result of this study is expected to be used to respond to environmental changes by identifying and predicting changes in the diversity and distribution of benthic macroinvertebrates in Korea estuaries.