• Title/Summary/Keyword: Biometric Recognition

Search Result 241, Processing Time 0.025 seconds

A Iris Recognition Using Zernike Moment and Wavelet (Zernike 모멘트와 Wavelet을 이용한 홍채인식)

  • Choi, Chang-Soo;Park, Jong-Cheon;Jun, Byoung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4568-4575
    • /
    • 2010
  • Iris recognition is a biometric technology that uses iris pattern information, which has features of stability, security etc. Because of this reason, it is especially appropriate under certain circumstances of requiring a high security. Recently, using the iris information has a variety uses in the fields of access control and information security. In extracting the iris feature, it is desirable to extract the feature which is invariant to size, lights, rotation. We have easy solutions to the problem of iris size and lights by previous processing but there is still problem of iris feature extract invariant to rotation. In this paper, To improve an awareness ratio and decline in speed for a revision of rotation, it is proposed that the iris recognition method using Zernike Moment and Daubechies Wavelet. At first step, the proposed method groups rotated iris into similar things by statistical feature of Zernike Moment invariant to a rotation, which shortens processing time of iris recognition and looks equal to an established method in the performance of recognition too. therefore, proposed method could confirm the possibility of effective application for large scale iris recognition system.

Fusion algorithm for Integrated Face and Gait Identification (얼굴과 발걸음을 결합한 인식)

  • Nizami, Imran Fareed;Hong, Sug-Jun;Lee, Hee-Sung;Ann, Toh-Kar;Kim, Eun-Tai;Park, Mig-Non
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.15-18
    • /
    • 2007
  • Identification of humans from multiple view points is an important task for surveillance and security purposes. For optimal performance the system should use the maximum information available from sensors. Multimodal biometric systems are capable of utilizing more than one physiological or behavioral characteristic for enrollment, verification, or identification. Since gait alone is not yet established as a very distinctive feature, this paper presents an approach to fuse face and gait for identification. In this paper we will use the single camera case i.e. both the face and gait recognition is done using the same set of images captured by a single camera. The aim of this paper is to improve the performance of the system by utilizing the maximum amount of information available in the images. Fusion is considered at decision level. The proposed algorithm is tested on the NLPR database.

  • PDF

Design and Implementation of an Emotion Recognition System using Physiological Signal (생체신호를 이용한 감정인지시스템의 설계 및 구현)

  • O, Ji-Soo;Kang, Jeong-Jin;Lim, Myung-Jae;Lee, Ki-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.1
    • /
    • pp.57-62
    • /
    • 2010
  • Recently in the mobile market, the communication technology which bases on the sense of sight, sound, and touch has been developed. However, human beings uses all five - vision, auditory, palatory, olfactory, and tactile - senses to communicate. Therefore, the current paper presents a technology which enables individuals to be aware of other people's emotions through a machinery device. This is achieved by the machine perceiving the tone of the voice, body temperature, pulse, and other biometric signals to recognize the emotion the dispatching individual is experiencing. Once the emotion is recognized, a scent is emitted to the receiving individual. A system which coordinates the emission of scent according to emotional changes is proposed.

Human activity recognition with analysis of angles between skeletal joints using a RGB-depth sensor

  • Ince, Omer Faruk;Ince, Ibrahim Furkan;Yildirim, Mustafa Eren;Park, Jang Sik;Song, Jong Kwan;Yoon, Byung Woo
    • ETRI Journal
    • /
    • v.42 no.1
    • /
    • pp.78-89
    • /
    • 2020
  • Human activity recognition (HAR) has become effective as a computer vision tool for video surveillance systems. In this paper, a novel biometric system that can detect human activities in 3D space is proposed. In order to implement HAR, joint angles obtained using an RGB-depth sensor are used as features. Because HAR is operated in the time domain, angle information is stored using the sliding kernel method. Haar-wavelet transform (HWT) is applied to preserve the information of the features before reducing the data dimension. Dimension reduction using an averaging algorithm is also applied to decrease the computational cost, which provides faster performance while maintaining high accuracy. Before the classification, a proposed thresholding method with inverse HWT is conducted to extract the final feature set. Finally, the K-nearest neighbor (k-NN) algorithm is used to recognize the activity with respect to the given data. The method compares favorably with the results using other machine learning algorithms.

A Secure Face Cryptogr aphy for Identity Document Based on Distance Measures

  • Arshad, Nasim;Moon, Kwang-Seok;Kim, Jong-Nam
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.10
    • /
    • pp.1156-1162
    • /
    • 2013
  • Face verification has been widely studied during the past two decades. One of the challenges is the rising concern about the security and privacy of the template database. In this paper, we propose a secure face verification system which generates a unique secure cryptographic key from a face template. The face images are processed to produce face templates or codes to be utilized for the encryption and decryption tasks. The result identity data is encrypted using Advanced Encryption Standard (AES). Distance metric naming hamming distance and Euclidean distance are used for template matching identification process, where template matching is a process used in pattern recognition. The proposed system is tested on the ORL, YALEs, and PKNU face databases, which contain 360, 135, and 54 training images respectively. We employ Principle Component Analysis (PCA) to determine the most discriminating features among face images. The experimental results showed that the proposed distance measure was one the promising best measures with respect to different characteristics of the biometric systems. Using the proposed method we needed to extract fewer images in order to achieve 100% cumulative recognition than using any other tested distance measure.

A study on the implementation of identification system using facial multi-modal (얼굴의 다중특징을 이용한 인증 시스템 구현)

  • 정택준;문용선
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.5
    • /
    • pp.777-782
    • /
    • 2002
  • This study will offer multimodal recognition instead of an existing monomodal bioinfomatics by using facial multi-feature to improve the accuracy of recognition and to consider the convenience of user . Each bioinfomatics vector can be found by the following ways. For a face, the feature is calculated by principal component analysis with wavelet multiresolution. For a lip, a filter is used to find out an equation to calculate the edges of the lips first. Then by using a thinning image and least square method, an equation factor can be drawn. A feature found out the facial parameter distance ratio. We've sorted backpropagation neural network and experimented with the inputs used above. Based on the experimental results we discuss the advantage and efficiency.

Finger Vein Recognition Based on Multi-Orientation Weighted Symmetric Local Graph Structure

  • Dong, Song;Yang, Jucheng;Chen, Yarui;Wang, Chao;Zhang, Xiaoyuan;Park, Dong Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.4126-4142
    • /
    • 2015
  • Finger vein recognition is a biometric technology using finger veins to authenticate a person, and due to its high degree of uniqueness, liveness, and safety, it is widely used. The traditional Symmetric Local Graph Structure (SLGS) method only considers the relationship between the image pixels as a dominating set, and uses the relevant theories to tap image features. In order to better extract finger vein features, taking into account location information and direction information between the pixels of the image, this paper presents a novel finger vein feature extraction method, Multi-Orientation Weighted Symmetric Local Graph Structure (MOW-SLGS), which assigns weight to each edge according to the positional relationship between the edge and the target pixel. In addition, we use the Extreme Learning Machine (ELM) classifier to train and classify the vein feature extracted by the MOW-SLGS method. Experiments show that the proposed method has better performance than traditional methods.

Fingerprint Recognition Using Artificial Neural Network (인공신경망을 이용한 지문인식)

  • Jung, Jung-hyun;Choi, Byung-Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.417-420
    • /
    • 2014
  • Importance of security system to prevent recently increased financial security accident is increasing. Biometric system between the security systems is focused. Fingerprint recognition has many useful aspects such as security, reliability and portability. In this treatise, fingerprint recognition technique is realized by using artificial neural network. Artificial Neural Network(ANN) is a mathematics learning model that makes specific patterns that a program can recognize to show a nerve network's characteristic on a computer. Input fingerprint images have a preprocessing process such as equalization, binarization and thinning. We extract minutiae feature in the images and program can recognize a fingerprint through ANN.

  • PDF

Gait Recognition Using Shape Sequence Descriptor (Shape Sequence 기술자를 이용한 게이트 인식)

  • Jeong, Seung-Do
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2339-2345
    • /
    • 2011
  • Gait recognition is the method to identify the person who walks in front of camera using characteristics of individuals by a sequence of images of walking people. The accuracy of biometric such as fingerprint or iris is very high; however, to provide information needs downsides which allow users to direct contact or close-up, etc. There have been many studies in gait recognition because it could capture images and analysis characteristics far from a person. In order to recognize the gait of person needs a continuous sequence of walking which can be distinguished from the individuals should be extracted features rather than an single image. Therefore, this paper proposes a method of gait recognition that the motion of objects in sequence is described the characteristics of a shape sequence descriptor, and through a variety of experiments can show possibility as a recognition technique.

Iris Image Enhancement for the Recognition of Non-ideal Iris Images

  • Sajjad, Mazhar;Ahn, Chang-Won;Jung, Jin-Woo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1904-1926
    • /
    • 2016
  • Iris recognition for biometric personnel identification has gained much interest owing to the increasing concern with security today. The image quality plays a major role in the performance of iris recognition systems. When capturing an iris image under uncontrolled conditions and dealing with non-cooperative people, the chance of getting non-ideal images is very high owing to poor focus, off-angle, noise, motion blur, occlusion of eyelashes and eyelids, and wearing glasses. In order to improve the accuracy of iris recognition while dealing with non-ideal iris images, we propose a novel algorithm that improves the quality of degraded iris images. First, the iris image is localized properly to obtain accurate iris boundary detection, and then the iris image is normalized to obtain a fixed size. Second, the valid region (iris region) is extracted from the segmented iris image to obtain only the iris region. Third, to get a well-distributed texture image, bilinear interpolation is used on the segmented valid iris gray image. Using contrast-limited adaptive histogram equalization (CLAHE) enhances the low contrast of the resulting interpolated image. The results of CLAHE are further improved by stretching the maximum and minimum values to 0-255 by using histogram-stretching technique. The gray texture information is extracted by 1D Gabor filters while the Hamming distance technique is chosen as a metric for recognition. The NICE-II training dataset taken from UBRIS.v2 was used for the experiment. Results of the proposed method outperformed other methods in terms of equal error rate (EER).