• Title/Summary/Keyword: Biomedical application of Laser

Search Result 31, Processing Time 0.025 seconds

Recent Progress on Microfluidic Electrophoresis Device Application in Mass Spectrometry

  • Roy, Swapan Kumar;Kim, Seongnyeon;Yoon, Jung H.;Yoon, Yong-Kyu;Cho, Kun
    • Mass Spectrometry Letters
    • /
    • v.9 no.1
    • /
    • pp.1-16
    • /
    • 2018
  • Microfluidic technologies hold high promise and emerge as a potential molecular tool to facilitate the progress of fundamental and applied biomedical researches by enabling miniaturization and upgrading current biological research tools. In this review, we summarize the state of the art of existing microfluidic technologies and its' application for characterizing biophysical properties of individual cells. Microfluidic devices offer significant advantages and ability to handle in integrating sample processes, minimizing sample and reagent volumes, and increased analysis speed. Therefore, we first present the basic concepts and summarize several achievements in new coupling between microfluidic devices and mass spectrometers. Secondly, we discuss the recent applications of microfluidic chips in various biological research field including cellular and molecular level. Finally, we present the current challenge of microfluidic technologies and future perspective in this study field.

Pulsed laser surface modification for heat treatment and nano-texturing on biometal surface

  • Jeon, Hojeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.118.1-118.1
    • /
    • 2016
  • The laser surface modification has been reported for its functional applications for improving tribological performance, wear resistance, hardness, and corrosion property. In most of these applications, continuous wave lasers and pulsed lasers were used for surface melting, cladding, alloying. Since flexibility in processing, refinement of microstructure and controlling the surface properties, technology utilizing lasers has been used in a number of fields. Especially, femtosecond laser has great benefits compared with other lasers because its pulsed width is much shorter than characteristic time of thermal diffusion, which leads to diminish heat affected zone. Moreover, laser surface engineering has been highlighted as an effective tool for micro/nano structuring of materials in the bio application field. In this study, we applied femtosecond and nanosecond pulsed laser to treat biometals, such as Mg, Mg alloy, and NiTi alloy, by heating to improve corrosion properties and functionalize their surface controlling cell response as implantable biomedical devices.

  • PDF

Enhancement of Anticancer Effect through Photodynamic Therapy with High Oxygen Concentration

  • Kim, Yun-Ho;Chung, Phil-Sang;Lee, Sang-Joon;Shin, Jang-In;Hwang, Hee-Jun;Ahn, Jin-Chul
    • Biomedical Science Letters
    • /
    • v.15 no.1
    • /
    • pp.87-91
    • /
    • 2009
  • In photodynamic therapy (PDT), oxygen plays important role. Because of singlet oxygen which is produced by activated photosensitizer after laser irradiation of specific wavelength. The aim of this study is to find how oxygen concentration affects anticancer effect in PDT. Groups were divided into PDT with oxygen applied group and only PDT applied group. PDT with oxygen applied group supplied oxygen for 15 minute before laser irradiation. In vitro, CT-26 cell was incubated with various concentration of photofrin $(50.0{\sim}0.05{\mu}g/ml)$ and was irradiated with 632nm diode laser 6hr after application of photofrin. The cell viability of two groups was assessed by MTT assay. In vivo, CT-26 cell line was transplanted into the subcutaneous tissue of BALB/c mouse. The anticancer effect of two groups was measured by tumor volume change. In vitro study, the cell viability was significantly decreased at $1.56{\sim}3.13{\mu}g/ml$ in PDT with oxygen applied group. In vivo study, the PDT with oxygen applied group significantly higher reduction rate of tumor volume 7 days after PDT compared to PDT only group. The high oxygen concentration might enhance the anticancer effect of the photodynamic therapy.

  • PDF

The Effect of an Optical Clearing Agent on Tissue Prior to 1064-nm Laser Therapy

  • Youn, Jong-In
    • Medical Lasers
    • /
    • v.10 no.3
    • /
    • pp.146-152
    • /
    • 2021
  • Background and Objectives Although lasers have been widely applied in tissue treatment, the light penetration depth in tissues is limited by the tissue turbidity and affected by its absorption and scattering characteristics. This study investigated the effect of using an optical clearing agent (OCA) on tissue to improve the therapeutic effect of 1064 nm wavelength laser light by reducing the heat generated on the skin surface and increasing the penetration depth. Materials and Methods A diode laser (λ = 1064 nm) was applied to a porcine specimen with and without OCA to investigate the penetration depth of the laser light and temperature distribution. A numerical simulation using the finite element method was performed to investigate the temperature distribution of the specimen compared to ex-vivo experiments using a thermocouple and double-integrating sphere to measure the temperature profile and optical properties of the tissue, respectively. Results Simulation results showed a decrease in tissue surface temperature with increased penetration depth when the OCA was applied. Furthermore, both absorption and scattering coefficients decreased with the application of OCA. In ex-vivo experiments, temperatures decreased for the tissue surface and the fat layer with the OCA, but not for the muscle layer. Conclusion The use of an OCA may be helpful for reducing surface heat generation and enhance the light penetration depth in various near-infrared laser treatments.

Applications of MALDI-TOF Mass Spectrometry in Clinical Microbiology

  • Shin, Kyeong Seob;Yum, Jonghwa
    • Biomedical Science Letters
    • /
    • v.28 no.3
    • /
    • pp.145-156
    • /
    • 2022
  • Over the past few decades, few technologies have had a greater impact on clinical microbiology laboratories than matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF MS). The MALDI-TOF MS is a fast, accurate, and low-cost and efficient method of microbial identification. This technology generates characteristic mass spectral fingerprints that is a unique signature for each microorganism, making it an ideal method for accurate identification at the genus and species levels of both bacterial and fastidious microorganism such as anaerobes, mycobacterium and fungi etc. In addition, MALDI-TOF MS has been successfully used in microbial subtyping and susceptibility tests such as determination of resistance genes. In this study, the authors summarized the application of MALDI-TOF MS in clinical microbiology and clinical research and explored the future of MALDI-TOF MS.

Development of Laser-based X-ray Microscope System for Biomedical Application (레이저 기반의 생체의료용 X-선 현미경 시스템 개발)

  • 윤권하
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.110-111
    • /
    • 2003
  • 금세기는 ‘광의 시대’이며, 그 중에서도 앞으로 발전이 가장 기대되는 부분은 X-선을 응용한 과학·기술이다. 그것을 다루는 학문분야의 하나가 X-선 결상광학이고, 이 분야에서는 가시광선과는 다른 특수한 광학소자와 광학계 및 검출기가 필요하다. 생명체에 대한 보다 많은 정보를 얻기위해 인간은 미세 세포에 대한 연구를 추구하여 왔고, 미세 세포에 대한 연구를 보다 정밀하고 살아있는 생체 상태로 관측할 수 있는 가장 좋은 도구중의 하나가 물의 창 영역(λ=2.3∼4.4nm)의 연 X-선 현미경이다. (중략)

  • PDF

Frequency-shifted feedback laser for biomedical application (생체의료 응용을 위한 주파수 이동 되먹임 레이저)

  • 지명훈;이영우
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.86-87
    • /
    • 2002
  • 생체의용 Optical Coherence Tomography (OCT)는 살아있는 표피의 내부 미세구조의 고해상도 단면 영상을 얻는 기술이다. OCT는 1-2mm의 깊이의 작은 혈관이나 표피의 내부 구조 영상을 얻을 수 있다. OCT의 광원으로는 800nm대와 1300nm대의 파장을 갖는 Edge-emitting Light-Emitting Diode(ELED)와 Super-Luminescent diode(SLD)를 많이 사용하고 있다. 그러나 기존 광원의 가간섭성 길이가 정밀의료계측 분야의 응용에서 요구하는 해상도에 충분하지 못하다. (중략)

  • PDF

Conceptual Design of Soft X-ray Microscopy for Live Biological Samples

  • Kim, Kyong-Woo;Nam, Ki-Yong;Kwon, Young-Man;Shim, Seong-Taek;Kim, Kyu-Gyeom;Yoon, Kwon-Ha
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.230-233
    • /
    • 2003
  • This study describes the conceptual design of a soft x-ray microscope system based on a laserbased source for biomedical application with high resolution (${\leq}$50nm). The laboratory scale soft x-ray microscope consists of high power laser plasma x-ray source and grazing incidence mirrors with high reflectivity. The laser plasma source used for developing this system employs Q-switched Nd-YAG pulsed laser. The laser beam is focused on a tantalum (Ta) target. The Wolter type I mirror was used as condenser optics for sample illumination and as objective mirror for focusing on a detector. The fabrication of the Wolter type I mirror was direct internal cutting using ultraprecision DTM. A hydrated biological specimen was put between the two silicon wafers, the center of which was $Si_3N_4$ windows of 100㎚ thickness. The main issues in the future development work are to make a stable, reliable and reproducible x-ray microscope system.

Comparison of two techniques for transpharyngeal endoscopic auditory tube diverticulotomy in the horse

  • Koch, Drew W.;Easley, Jeremiah T.;Nelson, Brad B.;Delcambre, Jeremy J.;McCready, Erin G.;Hackett, Eileen S.
    • Journal of Veterinary Science
    • /
    • v.19 no.6
    • /
    • pp.835-839
    • /
    • 2018
  • Auditory tube diverticula, also known as guttural pouches, are naturally occurring dilations of the auditory tube in horses that communicate with the nasopharynx through a small ostium. Infection and select other conditions can result in inflammation and narrowing of the nasopharyngeal ostium, which prevents drainage of fluid or egress of air and can lead to persistent infection or guttural pouch tympany. Auditory tube diverticulotomy allows continuous egress from the auditory tube diverticula and is a feature of disease treatment in horses, in which medical treatment alone is not successful. Transpharyngeal endoscopic auditory tube diverticulotomy was performed using a diode laser either at a single dorsal pharyngeal recess location or bilaterally caudal to the nasopharyngeal ostium in 10 horse head specimens. Both methods resulted in clear communication between the nasopharynx and auditory tube diverticula. Diverticulotomy performed in the dorsal pharyngeal recess required less laser energy and activation time and had a shorter surgical duration than diverticulotomy performed caudal to the nasopharyngeal ostium. Further study related to the clinical application of both techniques is warranted.

Development of Implantable Blood Pressure Sensor Using Quartz Wafer Direct Bonding and Ultrafast Laser Cutting (Quatrz 웨이퍼의 직접접합과 극초단 레이저 가공을 이용한 체내 이식형 혈압센서 개발)

  • Kim, Sung-Il;Kim, Eung-Bo;So, Sang-kyun;Choi, Jiyeon;Joung, Yeun-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.5
    • /
    • pp.168-177
    • /
    • 2016
  • In this paper we present an implantable pressure sensor to measure real-time blood pressure by monitoring mechanical movement of artery. Sensor is composed of inductors (L) and capacitors (C) which are formed by microfabrication and direct bonding on two biocompatible substrates (quartz). When electrical potential is applied to the sensor, the inductors and capacitors generates a LC resonance circuit and produce characteristic resonant frequencies. Real-time variation of the resonant frequency is monitored by an external measurement system using inductive coupling. Structural and electrical simulation was performed by Computer Aided Engineering (CAE) programs, ANSYS and HFSS, to optimize geometry of sensor. Ultrafast laser (femto-second) cutting and MEMS process were executed as sensor fabrication methods with consideration of brittleness of the substrate and small radial artery size. After whole fabrication processes, we got sensors of $3mm{\times}15mm{\times}0.5mm$. Resonant frequency of the sensor was around 90 MHz at atmosphere (760 mmHg), and the sensor has good linearity without any hysteresis. Longterm (5 years) stability of the sensor was verified by thermal acceleration testing with Arrhenius model. Moreover, in-vitro cytotoxicity test was done to show biocompatiblity of the sensor and validation of real-time blood pressure measurement was verified with animal test by implant of the sensor. By integration with development of external interrogation system, the proposed sensor system will be a promising method to measure real-time blood pressure.