• 제목/요약/키워드: Biomedical application

검색결과 862건 처리시간 0.033초

휴대용 호흡 감시장치의 개발 (Development of Handheld Respiration Monitoring System)

  • 권성훈;김희찬;최성욱
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1998년도 추계학술대회
    • /
    • pp.183-184
    • /
    • 1998
  • Respiration monitoring is important in many clinical situations due to its relationship to vitality. But present commercial monitoring systems are bulky and expensive, so they are inadequate to be used for long term recording or out-patients application. We have developed a low cost, low power, handhold respiration monitoring system based on airflow measurement. Respiration flow is indirectly detected using a thermister or a themocouple sensor. Real time recording of respiration rate, abnormality detection and apnea alarming are available.

  • PDF

효율적인 Micromixer의 통합된 기능 평가 및 Glucose-Catalysts 반응에 적용 (Integrated function evaluation of efficient micromixer and application to glucose-catalysts reaction)

  • 김덕중;백주열;이상훈
    • 센서학회지
    • /
    • 제14권5호
    • /
    • pp.291-296
    • /
    • 2005
  • In this paper, the PDMS based micromixer having 3-dimension triangular structure has been developed for the reaction of samples in the micro volume. The mixing efficiency was measured according to the change of Reynolds number (Re: 0.08, 0.8, 8, 16) and channel height (100, 200, $300{\mu}m$). Total length of mixing region is 7.4 mm and the measured mixing efficiencies at the outlet were over 85 %. Within the mixing length 2.4 mm, the mixing efficiencies were more than 70 % at any Reynolds numbers, and this indicates the strong mixing has occurred inside the mixing channel due the triangular structures. By employing these 2 mixers, we have fabricated the microreactor to detect the glucose-catalysts reaction. The microreactor showed good reactivity of glucose and enzymes with the small amount of sample solution.

생명공학과 의학을 위한 마이크로 기술 (Microtechnology for Biotechnology and Medicine)

  • 이상훈
    • 대한의용생체공학회:의공학회지
    • /
    • 제29권1호
    • /
    • pp.1-7
    • /
    • 2008
  • Recent a few decades, the microtechnology has been progressed so rapidly and applied in diverse areas. Especially, this technology was focused on the field of biotechnology and medicine because of its size and simple fabrication process. In this paper, the current status of microtechnology is briefly introduced from the aspect of material, process and device and the application of this technology in biotechnology and medicine is also described. The microtechnology will be more broadly applied in future in the biotechnology and medicine area and the biomedical engineer should have continuous interests in this technology.

생체의용계측을 위한 극초단 Cr4+:Forsterite 레이저의 이론 해석 (Theoritical Analysis of Ultra Short Pulse Cr4+:Forsterite Laser for the Biomedical Applications)

  • 김신자;황대석;이승용;고대영;류광렬;이호근;이영우
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2004년도 춘계종합학술대회
    • /
    • pp.335-338
    • /
    • 2004
  • 본 논문에서는 생체 계측용 OCT의 광원으로 사용될 광대역 Cr4+:Forsterite 레이저의 동작 특성을 알아보기 위해 이론 해석과 수치 해석을 수행하였다. 수치해석에 사용된 Cr4+;Forsterite 매질 모델은 직경이 3mm이고, 길이는 5mm로 0.04%의 크롬 도핑 농도를 갖는다. 해석 결과에 의해 펌핑 광원이 600mW 일 때 발진하고, 펌핑 광원이 5W 부근일 때 포화된다는 것을 알 수 있었다.

  • PDF

생체신호를 기반으로 한 감정 관리 어플리케이션 (An application of emotion management based on bio-signals)

  • 이동해;박수민;이슬기
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.204-207
    • /
    • 2019
  • 보건복지부 「2016년도 정신질환실태 역학조사」에 따르면 성인 4명 중 1명 이상이 평생 한번 이상 정신건강 문제를 경험하는 것으로 밝혀졌다. 이에 본 연구는 잦은 우울감을 느끼는 현대인들이 스스로 감정 상태를 파악하고 예방할 수 있도록 아두이노(Arduino)와 앱인벤터를 통해 사용자의 뇌파, 심전도, 온도 등 생체신호를 지속적으로 측정하는 어플리케이션을 구현하였다.

E-Prime에 기반한 손가락 촉각 자극기의 개발 (Development of a Finger Tactile Stimulator Based on E-Prime Software)

  • 김형식;민윤기;김보성;민병찬;양재웅;이수정;최미현;이정한;탁계래;이봉수;전재훈;정순철
    • 감성과학
    • /
    • 제13권4호
    • /
    • pp.703-710
    • /
    • 2010
  • 본 연구에서는 선행 연구에서 개발된 촉각 자극 시스템의 시스템적인 문제, 자극 제어에 관한 문제, 기타 부가적인 문제들을 보완할 수 있는 촉각 자극기를 개발하였다. 개발된 장치는 제어부(control unit), 구동부(drive unit), 진동부(vibrator)의 세부분으로 구성된다. 제어부는 E-Prime 소프트웨어로부터 명령을 전송받고 진동 자극 신호를 발생한다. 구동부는 촉각 자극기가 효과적으로 진동 자극을 발생할 수 있도록 충분한 전류를 공급한다. 진동부는 작은 동전(coin) 형 진동기(vibrator)와 벨크로(velcro)로 구성되며 피험자의 손에 쉽게 고정 할 수 있도록 제작하였다. 개발된 장치는 소형, 경량, 저전력 구동, 간단한 구조, 최대 35개의 자극 채널, 시각 및 청각과의 다양한 자극 조합을 지연시간 없이 제시할 수 있도록 설계 되어 시스템적인 문제들을 보완하였다. 자극의 크기와 시간을 10단계로 조절할 수 있도록 하고, 넓은 동작주파수 범위를 확보하여 자극 제어에 관한 문제들을 보완하였다. 저전압 구동으로 인체에 대한 안정성을 확보하고, 손가락 이외에 신체의 어느 부분이든 자극 제시가 가능하도록 제작하였다. 특히 본 시스템은 인지과학 연구에서 범용으로 사용되는 소프트웨어인 E-Prime을 기반으로 개발되었기 때문에 활용성이 매우 높을 것으로 판단된다.

  • PDF

A Study of Electromagnetic Actuator for Electro-pneumatic Driven Ventricular Assist Device

  • Jung Min Woo;Hwang Chang Mo;Jeong Gi Seok;Kang Jung Soo;Ahn Chi Bum;Kim Kyung Hyun;Lee Jung Joo;Park Yong Doo;Sun Kyung
    • 대한의용생체공학회:의공학회지
    • /
    • 제26권6호
    • /
    • pp.393-398
    • /
    • 2005
  • An electromechanical type is the most useful mechanism in the various pumping mechanisms. It, however, requires a movement converting system including a ball screw, a helical cam, or a solenoid-beam spring, which makes the device complex and may lessen reliability. Thus, the authors have hypothesized that an electromagnetic actuator mechanism can eliminate the movement converting system and that thereby enhance the mechanical reliability and operative simplicity of an electro­pneumatic pump. The purpose of this study was to show a novel application of electromagnetic actuator mechanism in pulsatile pump and to provide preliminary data for further evaluations. The electromagnetic actuator consists of stators with a single winding excitation coil and movers with a high energy density neodymium-iron-boron permanent magnet. A 0.5mm diameter wire was used for the excitation coil, and 1000 turns were wound onto the stators core with parallel. A prototype of extracorporeal electro-pneumatic pump was constructed, and the pump performance tests were performed using a mock system to evaluate the efficiency of the electromagnetic actuator mechanism. When forward and backward electric currents were supplied to the excitation coil, the mover effectively moved back and forth. The nominal stroke length of the actuator was 10mm. The actuator dimension was 120mm in diameter and 65mm in height with a mass of 1.4kg. The prototype pump unit was 150mm in diameter, 150mm in thickness and 4.5kg in weight. The maximum force output was 70N at input current of 4.5A and the maximum pump rate was 150 beats per minute. The maximum output was 2.0 L/minute at a rate of 80bpm when the afterload was 100mmHg. The electromagnetic actuator mechanism was successfully applied to construct the prototype of extracorporeal electro­pneumatic pump. The authors provide the above results as a preliminary data for further studies.

Nanowire Patterning for Biomedical Applications

  • Yun, Young-Sik;Lee, Jun-Young;Yeo, Jong-Souk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.382-382
    • /
    • 2012
  • Nanostructures have a larger surface/volume ratio as well as unique mechanical, physical, chemical properties compared to existing bulk materials. Materials for biomedical implants require a good biocompatibility to provide a rapid recovery following surgical procedure and a stabilization of the region where the implants have been inserted. The biocompatibility is evaluated by the degree of the interaction between the implant materials and the cells around the implants. Recent researches on this topic focus on utilizing the characteristics of the nanostructures to improve the biocompatibility. Several studies suggest that the degree of the interaction is varied by the relative size of the nanostructures and cells, and the morphology of the surface of the implant [1, 2]. In this paper, we fabricate the nanowires on the Ti substrate for better biocompatible implants and other biomedical applications such as artificial internal organ, tissue engineered biomaterials, or implantable nano-medical devices. Nanowires are fabricated with two methods: first, nanowire arrays are patterned on the surface using e-beam lithography. Then, the nanowires are further defined with deep reactive ion etching (RIE). The other method is self-assembly based on vapor-liquid-solid (VLS) mechanism using Sn as metal-catalyst. Sn nanoparticle solutions are used in various concentrations to fabricate the nanowires with different pitches. Fabricated nanowries are characterized using scanning electron microscopy (SEM), x-ray diffraction (XRD), and high resolution transmission electron microscopy (TEM). Tthe biocompatibility of the nanowires will further be investigated.

  • PDF

3D 프린팅 기술의 의료기기 수리 적용에 대한 국내 규제 이슈 및 기술적 적합성 평가 (Regulation Issues in Korea and Technical Feasibility Evaluation of 3D Printing-Based Medical Device Repair)

  • 윤성욱;남경원
    • 대한의용생체공학회:의공학회지
    • /
    • 제41권2호
    • /
    • pp.75-83
    • /
    • 2020
  • In large-scale hospitals, the department of biomedical engineering should always provide quick repair service for damaged medical devices to guarantee continuous patient treatment. However, in actual circumstances, there are so many time-consuming issues that delays device repair for weeks or even months; therefore, it is required to prepare alternative ways for quick repair service. In this study, we first mentioned about the regulation issues in Korea about the 3D printing-based medical device repair, and then introduced the results of our preliminary study that evaluated the feasibility of 3D printing-based medical device repair before real-field application. Results of the study demonstrated that, in all of the 23 cases, parts for repair that were manufactured by 3D-printing were successfully fixed and connected to the main body of the original device, and showed sufficient rigidity for protecting internal parts of the device. Considering the experimental results, medical device repair by applying 3D printing technology can be a promising alternative in cases when regular repair process is not available or takes too much time.

Plasma Surface Modification of Patterned Polyurethane Acrylate (PUA) Film for Biomedical Applications

  • Yun, Young-Shik;Kang, Eun-Hye;Yun, In-Sik;Kim, Yong-Oock;Yeo, Jong-Souk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.223.2-223.2
    • /
    • 2015
  • Polyurethane acrylate (PUA) has been introduced to utilize as a mold material for sub-100 nm lithography as it provides advantages of stiffness for nanostructure formation, short curing time, flexibility for large area replication and transparency for relevant biomedical applications. Due to the ability to fabricate nanostructures on PUA, there have been many efforts to mimic extracellular matrix (ECM) using PUA especially in a field of tissue engineering. It has been demonstrated that PUA is useful for investigating the nanoscale-topographical effects on cell behavior in vitro such as cell attachment, spreading on a substrate, proliferation, and stem cell fate with various types of nanostructures. In this study, we have conducted surface modification of PUA films with micro/nanostructures on their surfaces using plasma treatment. In general, it is widely known that the plasma treated surface increases cell attachment as well as adsorption of ECM materials such as fibronectin, collagen and gelatin. Effect of plasma treatment on PUA especially with surface of micro/nanostructures needs to be understood further for its biomedical applications. We have evaluated the modified PUA film as a culture platform using adipose derived stem cells. Then, the behavior of stem cells and the level of adsorbed protein have been analyzed.

  • PDF