• 제목/요약/키워드: Biomechanical test

검색결과 127건 처리시간 0.032초

Statistical Parametric Mapping을 이용한 시상면에서의 양발 착지와 외발 착지의 전략 차이 (Analysis of the Differences of the Shock Attenuation Strategy between Double-leg and Single-leg Landing on Sagittal Plane using Statistical Parametric Mapping)

  • Ha, Sunghe;Park, Sang-Kyoon;Lee, Sae Yong
    • 한국운동역학회지
    • /
    • 제29권4호
    • /
    • pp.255-261
    • /
    • 2019
  • Objective: The purpose of this study was to investigate differences of shock attenuation strategies between double-leg and single-leg landing on sagittal plane using statistical parametric mapping. Method: Nine healthy female professional soccer players (age: 24.0±2.5 yrs, height: 164.9±3.3 cm, weight: 55.7±6.6 kg, career: 11.2±1.4 yrs) were participated in this study. The subjects performed 10 times of double-leg and single-leg landing from the box of 30 cm height onto force plates respectively. The ground reaction force, angle, moment, angular velocity, and power of the ankle, knee, and hip joint on sagittal plane was calculated from initial contact to maximum knee flexion during landing phase. Statistical parametric mapping was used to compare the biomechanical variables of double-leg and single-leg landing of the dominant leg throughout the landing phase. Each mean difference of variables was analyzed using a paired t-test and alpha level was set to 0.05. Results: For the biomechanical variables, significantly increased vertical ground reaction force, plantarflexion moment of the ankle joint, negative ankle joint power and extension moment of the hip joint were found in single-leg landing compared to double-leg landing (p<.05). In addition, the flexion angle and angular velocity of the knee and hip joint in double-leg landing were observed significantly greater than single-leg landing, respectively (p<.05). Conclusion: These findings suggested that negative joint power and plantarflexion moment of the ankle joint can contribute to shock absorption during single-leg landing and may be the factors for preventing the musculoskeletal injuries of the lower extremity by an external force.

스쿼트 동작 시 웨이트 벨트 착용 전·후에 따른 운동역학적 분석 (Sports Biomechanical Analysis before and after Applying Weight Belt during Squat Exercise)

  • 이정기;허보섭;김용재;이효택
    • 수산해양교육연구
    • /
    • 제28권4호
    • /
    • pp.893-902
    • /
    • 2016
  • The purpose of this study is to investigate the effect of wearing a weightlifting belt, which is an auxiliary equipment used during squat, by measuring and analyzing biomechanical difference in lower limb and proposing safer and to suggest a more effective exercise method for general population. Selected 8 male participants in their 20s who have not performed regular resistance exercise for at least a year, but have experience of performing squat. The comprehensive method of study is as follows: subjects were notified of the purpose of the study and were told to practice warm-up and the squat motion for the experiment for 20 minutes. When the participant believed they were ready to begin, the experiment was started. At controlled points, foot pressure distribution sensor has been installed. Then left and right feet have been placed on the pressure distribution sensor, from which data for successful squat position that does not satisfy the criteria for failure have been collected and computed with Kwon3D XP program and TPScan program. For data processing of this study, SPSS 21.0 was used to calculated mean (M) and standard deviation (SD) of the analyzed values, and paired t-test has been conducted to investigate the difference before and after wearing the weightlifting belt, with p-value of ${\alpha}<.05$. As for time consumed depending on usage of weightlifting belt in squat, statistically significant difference has been found in P2, which is recovery movement. Lower limb angle depending on usage of weightlifting belt in squat has shown statistically significant difference in E1 foot joint(p<. 001). There has been statistically significant difference in E2 knee joint. Foot pressure percentage depending on usage of weightlifting belt in squat were found to be statistically significant (p<. 01) in both regions of anterior and posterior foot.

Biomechanical Analysis of Golf Driver Swing Motion According to Gender

  • Bae, Kang Ho;Lee, Joong Sook;Han, Ki Hoon;Shin, Jin Hyung
    • 한국운동역학회지
    • /
    • 제28권1호
    • /
    • pp.1-8
    • /
    • 2018
  • Objective: The purpose of this study is to investigate the differences in biomechanical variables of golf driving motion according to gender. Method: A total of 21 healthy golfers (11 men and 10 women) who have more than 5 years of professional experience and have been registered in the Korea Golf Association was recruited. A 250-Hz 8-camera motion capture system (MX-T20, Vicon, LA, USA) was used to capture the motion trajectories of a total of 42 reflective markers attached to the golfer's body and club. Moreover, two 1,000-Hz AMTI force plates (AMTI OR6-7-400, AMTI, MA, USA) were used to measure the ground reaction force. The mean and standard deviation for each parameter were then calculated for both groups of 21 subjects. SPSS Windows version 23.0 was used for statistical analysis. The independent t-test was used to determine the differences between groups. An alpha level of .05 was utilized in all tests. Results: There were differences in joint angles according to gender during golf driver swing. Men showed a statistically significantly higher peak joint angle and maximum range of angle in sagittal and frontal axis of the pelvis, hip, and knee. Moreover, women's swing of the pelvis and hips was found to have a pattern using the peak joint angle and range of angle in the vertical axis of the pelvis and hip. There were the differences in peak joint moment according to gender during golf driver swing. Men used higher joint moment in the downswing phase than women in the extensor, abductor, and external rotator muscles of the right hip; flexor and adductor muscles of left hip joint; and flexor and extensor muscles of the right knee. Conclusion: This result reveals that male golfers conducted driver swing using stronger force of the lower body and ground reaction force based on strength of hip and thigh than female golfers.

가토의 굴곡건 손상모델에서 Mitomycin-C가 인대 유착 방지에 미치는 영향 (The Effect of Mitomycin-C on Preventing Adhesion of Injured Flexor Tendon in Rabbit Model)

  • 성정화;강소라;김양우
    • Archives of Plastic Surgery
    • /
    • 제37권4호
    • /
    • pp.329-334
    • /
    • 2010
  • Purpose: Adhesion after flexor tendon injury is a result of fibrosis between tendon and tendon sheath. This, finally interfere with gliding mechanism of tendon and results in functional problem of hands. Therefore, there have been many trials to reduce adhesion around the tendon. However, there is no standard procedure clinically practiced in hospitals. Mitomycin-C is an antineoplastic alkylating agent that decrease fibroblast proliferation and scar formation. It is commonly used in many surgery to reduce postoperative adhesion. This study was designed to observe the effect of Mitomycin-C on preventing adhesion in injured flexor tendon. Methods: The deep flexor tendon of digit 2 and 4 in the left forepaw of 15 New Zealand White rabbits were subjected to partial tenotomy. In study group, injury site was exposed to a single 5-minute application of Mitomycin-C, and in control group was left untreated. Digit 2 and 4 in the right forepaw of each rabbit were considered as nonadhesion control group. After 2 weeks, the animals were sacrificed and digits were amputated for biomechanical test and histological study. Results: In biomechanical study to measure yield point, mean yield point of non-adhesion control was $17.43{\pm}2.33$ and $25.07{\pm}4.03$ for adhesion control, which proves increase of adhesion in adhesion control group (p<0.05) in 95% confidence. In Mitomycin-C group, mean yield point was $12.71{\pm}4.97$. Compared with adhesion control, there was decrease in adhesiveness in Mitomycin-C group (p<0.05) in 95% confidence. In histological study, the result of adhesion control revealed massive adhesions of bony structure, fibrotic tissue and tendon structure with ablation of the border. However in Mitomycin-C group, we could find increased fibrotic tissue, but adhesion is much lesser than adhesion group and borders between structures remain intact. Conclusion: This study suggests that Mitomycin-C can significantly reduce adhesion of injured flexor tendon in rabbit model.

디지털 인체 모델을 이용한 콤바인 수확 작업의 근골격계 상해요소 분석 (The Analysis of Risk for Musculoskeletal Inuries in Combine Harvesting Operation Using a Digital Human Model)

  • 김영진;임용훈;이경숙;최창현;문정환
    • Journal of Biosystems Engineering
    • /
    • 제35권3호
    • /
    • pp.206-213
    • /
    • 2010
  • The purpose of this study is to analyze musculoskeletal injuries in combine harvesting operation using a digital human model. In order to analyze problems in combine harvesting operation, the operations were broken into 5 work processes and then we preformed ergonomic and biomechanical analyses such as RULA test, Comfort Assessment and joint kinetic analysis for the each process. As a result, there was a clear need to change the combine operating environment, as the RULA score ranged from 4 to 7. In addition, we could find two major musculoskeletal injury factors which are the standing posture with upperbody forward tilting and inappropriate location of operating levers.

구조해석을 통한 척추측만증 교정 분석에 필요한 모델 개발 (Development of a Mathematical Model for Effect of Scoliosis Surgical Correction)

  • 김영은;최형연;손창규;이광희;이춘기
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.1059-1061
    • /
    • 2002
  • A FE model is to develop a personalized biomechanical model of the scoliotic spine that will allow the design of clinical test providing optimal estimation of the post-operation results. A flexible multi-body model of the spine including rib cage, clavicle, and scapular was developed to simulate several mobility simulations. Vertebrae, clavicle and scapular were represented using rigid bodies and ribs and sternum were modeled as flexible bodies. Kinematical Joints and spring elements were used to represent the intervertebral disc and ligaments respectively. Postero-anterior and lateral radiographics of a scoliotic spine were used to represent a 3D reconstruction. CT data for same patient were also used to verify vertebrae rotation driven from postero-anterior and lateral radiographic images. Simulated results showed good reducibility almost uniformly distributed along the spinal segments. It was also found that boundary and loading conditions, required to mimic the operation procedures, were proven to be very sensitive parameters to its results rather than its mechanical properties

  • PDF

스터드 차이에 따른 축구화의 운동역학적 변인 비교 (Biomechanical Analysis of Soccer Shoes According to the Difference of Stud)

  • 진영완
    • 한국운동역학회지
    • /
    • 제24권4호
    • /
    • pp.455-461
    • /
    • 2014
  • The purposes of this study were to reveal the kinematic and kinetic difference of hard ground soccer shoe, firm ground soccer shoe and soft ground soccer shoe. Soccer players were shoes of varying stud designs with some preferring the bladed studs while others opting for the conventional studded stud. Statistics were used one way-ANOVA and Tukey's Honestly Significant Difference Method. Seven healthy college soccer players were attended a test. All parameters were recorded using the Zebris system. Spatio-temporal variables were no significant difference. Lateral symmetry was statistically significant differences (p<.05). Vertical GRF parameters were no significant difference. Medial midfoot pressure, lateral midfoot pressure and central forefoot pressure were statistically significant differences (p<.05). This study demonstrates that playing surface significantly affects difference soccer shoes during soccer game. Furthermore, epidemiological investigation is warranted to determine the effects of playing surfaces on sport specific injury mechanisms.

생체 역학적 분석에 의한 Compression Hip Screw의 디자인 요소에 대한 평가 (Mechanical Response of Changes in Design of Compression Hip Screws with Biomechanical Analysis)

  • 문수정;이희성;권순영;이성재;안세영;이훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1172-1175
    • /
    • 2004
  • At present, CHS(Compression Hip Screw) is one of the best prosthesis for the intertrochanteric fracture. There is nothing to evaluate the CHS itself with the finite element analysis and mechanical tests. They have same ways of the experimental test of the ASTM standards. The purpose of this study is to evaluate the existing CHS and the new CHS which have transformational design factors with finite element analysis and mechanical tests. The mechanical tests are divided into compression tests and fatigue test for evaluating the failure load, strength and fatigue life. This finite element method is same as the experimental test of the ASTM standards. Under 300N of compression load at the lag screw head. There are less differences between Group (5H, basic type) and Group which has 8 screw holes. However, there are lots of big differences between Group and Group which is reinforced about thickness of the neck range. Moreover, the comparison of Group and Group shows similar tendency of the comparison of Group and Group . The Group is reinforced the neck range from Group. After the experimental tests and the finite element analysis, the most effective design factor of the compression hip screws is the reinforcement of the thickness, even though, there are lots of design factors. Moreover, to unite the lag screw with the plate and to analyze by static analysis, the result of this method can be used with experimental test or instead of it.

  • PDF

인체모델을 이용한 중장비 운전실 설계용 CAD 프로그램 (A Computer-Aided Design Program of Man-in-Cab for Heavy Construction Vehicle)

  • 손권;이희태
    • 대한기계학회논문집A
    • /
    • 제20권11호
    • /
    • pp.3525-3537
    • /
    • 1996
  • This paper presents a CAD program develpoed on a microcomputer in order to support graphic and computational assessment of ergonomic problems associated with the design of a man-in-cab system. The program is coded to help workspace designers with ergonomic evaluations needed in the design stage. This paper proposed a biomechanical -ergonomic evaluations needed using man and workplace models. The human model is developed to have dimensions obtained from the Korean anthropometric data reported in 1992. Its graphical representation is based on a wire-frame model but, whenever necessary, body segments can be represented by a solid model with hidden line/faces removed and shaded. Workplace models are presented for cabs of the excavator, one of the most popular construction vehicles. A workplace model consists of an operator seat, a steering wheel. two control levers, two pedals, and a control panel. The workplace elements can be modified in their sizes, positions, and orientations by changing the reference point and design parameters. An algorithm for the view test is suggested and loaded to provide a visual evaluaiton of the overall layout of a workplace model.

드롭 착지 시 스포츠 테이핑이 하지의 충격력과 근육 조율에 미치는 영향 (Effect of Sports Taping on Impact Forces and Muscle Tuning during Drop Landing)

  • 강년주;채원식
    • 한국운동역학회지
    • /
    • 제20권2호
    • /
    • pp.175-182
    • /
    • 2010
  • The purpose of this study was to evaluate the biomechanical effect of sports taping on the lower limb during drop landing. Twelve male university students who have no musculoskeletal disorder were recruited as the subjects. Principal strain, median frequency, vertical GRF, loading rate, angular velocity and resultant joint moment were determined for each trial. For each dependent variable, paired t-test was performed to test if significant difference existed between taped and untaped conditions(p<.05). The results showed that principal strain of the thigh and the shank in taping group were significantly less than those found in control group. These indicated that sports taping may prevent excessive mechanical strain caused by impact force during the deceleration phase. Flexion(-)-extension(+) and varus(-)-valgus(+) resultant joint moment of the knee joint in taping group were greater than corresponding value for control group. It seems that extensor muscle of the knee joint were not only supported by sports taping during knee flexion but also sports taping is effective for minimizing the possibility of injury.