• 제목/요약/키워드: Biomechanical study

검색결과 658건 처리시간 0.025초

Analysis of Biomechanical Differences based on Distance Changes in Connection with Approach Swings of Tour-professional Golfers

  • You, Moon-Seok;Lee, Kyung-Ill
    • 한국운동역학회지
    • /
    • 제26권1호
    • /
    • pp.83-92
    • /
    • 2016
  • Objective: This study aimed to compare differences in biomechanical factors according to distance changes in relation to approaches during a round of golf to obtain basic data on golf swings. Methods: The research subjects were 8 KPGA-affiliated professional golfers who performed approach shots that put a ball into a circle of 8 feet in diameter from distances of 30, 50, and 70 m. Data were collected by using six infrared cameras and a ground reaction force device, which were applied to calculate biomechanical factors by using Kwon3D XP. The calculated data were subjected to one-way ANOVA by using SPSS 20.0, with the significance level set at p value of 0.05. Results: Elapsed time, stance width, clubhead position variation, clubhead synthesis speed, and cocking angle significantly differed according to distance change during the approach swing. Clubhead speed was positively related with stance width and clubhead displacement. Ground reaction force significantly differed according to distance change during the approach swing. Factors before and after showed differences in other states, except in the impact state. Conclusion: In the present study, we drew several conclusions regarding biomechanical factors and ground reaction forces according to distance change in the approach swing of professional golfers. According to these conclusions, we suggest that distance control with swing range is more important than power control in maintaining the accuracy and consistency of golf swing and is the most important mechanism of golf swing.

보행동작에 대한 바이오메카닉스적 분석과 비디오의 정성적 분석의 상호관련성 (Relationship between the Biomechanical Analysis and the Qualitative Analysis of Video Software for the Walking Movement)

  • 배영상;우오구;이정민
    • 한국운동역학회지
    • /
    • 제20권4호
    • /
    • pp.421-427
    • /
    • 2010
  • The purpose of this study was to investigate the relationship between the quantitative analysis of biomechanical movement and the qualitative analysis of video software in order to evaluate for the walking movement. The fourteen collegiate students who agreed with the purpose and method of this study participated as subjects. The slow walking and fast walking of the subjects in the place of experiment were photographed, and calculated several mechanical factors. This empirical evidence from the experiment indicated the significant difference(p<.001) between each distant factors of the walking movement for both analyses methods, but there was no statistically significant difference between the spacial factors observed in the experiment. For more detail, no significant difference between the walking ratios that expressed the coordination between stride length and stride frequency was found. The findings also indicated the high coefficient of correlation(over r=.9) which supports higher explanation force for the biomechanical method and the Dartfish video software method. Therefore, if the data was gathered by using the proper experimental method, the video software method could be used just like the quantitative data of biomechanical method.

The biomechanical and biological effect of supercooling on cortical bone allograft

  • MuYoung Kim ;Hun-Young Yoon
    • Journal of Veterinary Science
    • /
    • 제24권6호
    • /
    • pp.79.1-79.16
    • /
    • 2023
  • Background: The need for a storage method capable of preserving the intrinsic properties of bones without using toxic substances has always been raised. Supercooling is a relatively recently introduced preservation method that meets this need. Supercooling refers to the phenomenon of liquid in which the temperature drops below its freezing point without solidifying or crystallizing. Objectives: The purpose of this study was to identify the preservation efficiency and applicability of the supercooling technique as a cortical bone allograft storage modality. Methods: The biomechanical effects of various storage methods, including deep freezing, cryopreservation, lyophilization, glycerol preservation, and supercooling, were evaluated with the three-point banding test, axial compression test, and electron microscopy. Additionally, cortical bone allografts were applied to the radial bone defect in New Zealand White rabbits to determine the biological effects. The degree of bone union was assessed with postoperative clinical signs, radiography, micro-computed tomography, and biomechanical analysis. Results: The biomechanical properties of cortical bone grafts preserved using glycerol and supercooling method were found to be comparable to those of normal bone while also significantly stronger than deep-frozen, cryopreserved, and lyophilized bone grafts. Preclinical research performed in rabbit radial defect models revealed that supercooled and glycerol-preserved bone allografts exhibited significantly better bone union than other groups. Conclusions: Considering the biomechanical and biological superiority, the supercooling technique could be one of the optimal preservation methods for cortical bone allografts. This study will form the basis for a novel application of supercooling as a bone material preservation technique.

Comparison of Biomechanical Stress on Low Back(L5/S1) for One-hand and Two-hands Lowering Activity

  • Kim, Hong-Ki
    • 대한인간공학회지
    • /
    • 제32권5호
    • /
    • pp.413-420
    • /
    • 2013
  • Objective: The objective of this study was to compare one-hand and two-hands lowering activity in terms of biomechanical stress for the range of lowering heights from knuckle height to 10cm above floor level. Background: Even though two-hands lifting/lowering activity of manual materials handling tasks are prevalent at the industrial site, many manual materials handling tasks which require the worker to perform one-hand lifting/lowering are also very common at the industrial site and forestry and farming. Method: Eight male subjects were asked to perform lowering tasks using both a one-handed as well as a two-handed lowering technique. Trunk muscle electromyographic activity was recorded while the subjects performed the lowering tasks. This information was used as input to an EMG-assisted free-dynamic biomechanical model that predicted spinal loading in three dimensions. Results: It was shown that for the left-hand lowering tasks, the values of moment, lateral shear force, A-P shear force, and compressive force were increased by the average 6%, as the workload was increased twice from 7.5kg to 15kg. For the right-hand lowering task, these were increased by the average 17%. For the two-hands lowering tasks, these were increased by the average 14%. Conclusion: Even though the effect of workload on the biomechanical stress for both one-hand and two-hands lowering tasks is not so significant for the workload less than 15kg, it can be claimed that the biomechanical stress for one-hand lowering is greater than for two-hands lowering tasks. Therefore, it can be concluded that asymmetrical lowering posture would give greater influence on the biomechanical stress than the workload effect for one-hand lowering activity. Application: The result of this study may be used to provide guidelines of recommended safe weights for tasks involved in one-hand lowering activity.

Biomechanical Comparison of Spinal Fusion Methods Using Interspinous Process Compressor and Pedicle Screw Fixation System Based on Finite Element Method

  • Choi, Jisoo;Kim, Sohee;Shin, Dong-Ah
    • Journal of Korean Neurosurgical Society
    • /
    • 제59권2호
    • /
    • pp.91-97
    • /
    • 2016
  • Objective : To investigate the biomechanical effects of a newly proposed Interspinous Process Compressor (IPC) and compare with pedicle screw fixation at surgical and adjacent levels of lumbar spine. Methods : A three dimensional finite element model of intact lumbar spine was constructed and two spinal fusion models using pedicle screw fixation system and a new type of interspinous devices, IPC, were developed. The biomechanical effects such as range of motion (ROM) and facet contact force were analyzed at surgical level (L3/4) and adjacent levels (L2/3, L4/5). In addition, the stress in adjacent intervertebral discs (D2, D4) was investigated. Results : The entire results show biomechanical parameters such as ROM, facet contact force, and stress in adjacent intervertebral discs were similar between PLIF and IPC models in all motions based on the assumption that the implants were perfectly fused with the spine. Conclusion : The newly proposed fusion device, IPC, had similar fusion effect at surgical level, and biomechanical effects at adjacent levels were also similar with those of pedicle screw fixation system. However, for clinical applications, real fusion effect between spinous process and hooks, duration of fusion, and influence on spinous process need to be investigated through clinical study.

배드민턴화의 미끄럼방지 아웃솔 부착 유무에 따른 생체역학적 요인 패턴비교 (Comparison of Biomechanical Factors on Badminton shoes between Anti-slip outsole and Non anti-slip outsole)

  • 이재훈;장영관;하종규;기재석
    • 대한안전경영과학회지
    • /
    • 제15권4호
    • /
    • pp.153-160
    • /
    • 2013
  • The purpose of this study was to compare biomechanical factors on badminton shoes between anti-slip outsole and non anti-slip outsole. Six subjects participated in this experiment. For three-dimensional analysis, eight cameras (Oqus 3series, Qualisys) were used to acquire raw data, and then the parameters were calculated and analyzed with Visual-3D. In conclusion, the patterns of spent time during side step, and maximum velocities of CoGs were consistent without joint angles of lower extremities in spite of small differences. Those of GRFs, and moment of lower extremities were absolutely consistent. This trend of biomechanical factors was that Y shoe (ante-treatment) was much greater and PS shoe (treatment) was greater than Y shoe (treatment). (That was, Y shoe (ante-treatment) > PS shoe (treatment) >Y shoe (treatment)). The findings of this study showed that anti-slip outsole was effective and brought increasing performance and decreasing injuries. It is suggested that further study of these phenomena will help understand many aspects of human locomotion, including work, performance, fatigue and possible injuries.

Efficacy of Forward Head Posture on Scapular Kinematic Changes and Shoulder Pain

  • Eunsang Lee
    • Physical Therapy Rehabilitation Science
    • /
    • 제11권4호
    • /
    • pp.436-445
    • /
    • 2022
  • Objective: Deformation of soft tissues around the neck and scapularcan caused by forward head posture(FHP), which has an uncomfortable effect on biomechanical changes in the scapula as well as functional disorders of the shoulder. However, studies related to direct FHP, biomechanical changes in the scapulafunction, and shoulder pain and disorder have not yet been conducted. Therefore, purpose of this study is to effect of decresedthe FHP on the shoulder function of the sacpular biomechanical examine the change in the shoulder painand disorder. Design: A randomized controlled trial Methods: The participants were 32adults(23.03±3.90 years) recruited and redivided randomly into Forward head posture corrective exercise(FHPCE) vs Control. The FHPCE group was proceeded according to the over load principle through 2steps biofeedback exercise and corrective exercise(n=16). The control (n=16) was TENS did not operated and padding 20 minute. This study was conducted 3 times a week for 4a weeks. Results: FHPCE group is improve in the results of craneocervical angle(p<0.05, 95% CI: 0.352, 4.073). In Mechanical changes of scapula in the shoulder flexion more significant improvement in FHPCE than control group[Axis X(p<0.05), Y(p<0.01), Z(p<0.01)], and shoulder abductionmore significant improvement in FHPCE than control group[xis X(p<0.01)], as well FHPCE showed significant increased in the results in the shoulder pain(p<0.05, 95% CI: -13.244, -1.566) Conclusions: This study suggected that FHP affects the biomechanical changes of the shoulder, and a new method for shoulder pain intervention

인두기능의 3차원적 생체역학 모델에 관한 연구 (A study on the three-dimensional biomechanical model of the human pharyngeal function)

  • 김성민;김남현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1852-1855
    • /
    • 1997
  • A three-dimensional biomechanical modle is proposed in order to simulate human pharyngeal function based on the FEM(Finite Element Method) utilizing optimization procedure.

  • PDF

인체역학적 비용함수들의 lifting 자세 예측도 비교 (A study on the lifting posture predictivity of biomechanical cost functions)

  • 최재호;박우진;정의승
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1996년도 춘계공동학술대회논문집; 공군사관학교, 청주; 26-27 Apr. 1996
    • /
    • pp.147-150
    • /
    • 1996
  • Human posture prediction and motion simulation methods try to solve inverse kinematic problems using the optimization technique based on the concept of minimum principle. It is very important to select a cost function which relfects the human posture acurately. In this study, lifting postures were predicted using the five biomechanical cost functions and compared with real human postures in order to evaluate the predictivities of the cost functions. The result showed that all the biomechanical cost functions used in this study could not predict lifting postures accurately. The cost function which minimizes the sum of joint moments showed the smallest mean prediction error, while the one which minimizes the MUR showed statistically better performance.

  • PDF

바로서기 동작 시 EEG와 역학변인 간 동작 예측의 탐구 (Exploration of Motion Prediction between Electroencephalography and Biomechanical Variables during Upright Standing Posture)

  • Kyoung Seok Yoo
    • 한국운동역학회지
    • /
    • 제34권2호
    • /
    • pp.71-80
    • /
    • 2024
  • Objective: This study aimed to explore the brain connectivity between brain and biomechanical variables by exploring motion recognition through FFT (fast fourier transform) analysis and AI (artificial intelligence) focusing on quiet standing movement patterns. Method: Participants included 12 young adult males, comprising university students (n=6) and elite gymnasts (n=6). The first experiment involved FFT of biomechanical signals (fCoP, fAJtorque and fEEG), and the second experiment explored the optimization of AI-based GRU (gated recurrent unit) using fEEG data. Results: Significant differences (p<.05) were observed in frequency bands and maximum power based on group and posture types in the first experiment. The second study improved motion prediction accuracy through GRU performance metrics derived from brain signals. Conclusion: This study delved into the movement pattern of upright standing posture through the analysis of bio-signals linking the cerebral cortex to motor performance, culminating in the attainment of motion recognition prediction performance.