• Title/Summary/Keyword: Biomechanical design

Search Result 141, Processing Time 0.025 seconds

A study of the Infantry Backpack System for Portability and Mobility Performance (보병용 배낭의 휴대 및 이동 성능에 관한 연구)

  • Chung, SungHak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.3
    • /
    • pp.155-161
    • /
    • 2014
  • The objective of this study is to weight analysis portable backpack system of infantry weapon systems for ergonomic design in manual materials handling tasks. For the product design, we analyzed the ergonomic guidelines and status of similar weapon systems by comparing the efficient operation performance provide for the basic data. Result of this study, the relationship between portability and mobility presented for schematic. In the short distance of the short biomechanical criterion, 1-2 hours in the middle of moving psychophysical criterion, 4 hour or more long-distance criterion applied for the physiological criterion for easy of trade-offs that need to be considered. This study suggests for 4 research items for infantry backpack system in manual materials handling tasks. Throughout the result of anthropometric populations, the 5%tile body weight for -0.91kg but 95%tile in 34.17kg considered to be margin for free, easy and efficient operation for the weight margin between portability and mobility in manual materials handling tasks.

Comparative Analysis of Plantar Pressure and Comfort Level in Developed-Domestic and Import Comfort Shoes for Elderly (고령층용 국내 개발 및 수입 컴포트화의 족저압 및 착화감 비교 분석)

  • Kim, Jae-Won;Choi, Jin-Seung;Park, Tae-Hyun;Tack, Gye-Rae;Choi, Kook-Lyeol;Lee, Sung-Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.4
    • /
    • pp.442-449
    • /
    • 2013
  • This study was to compare a domestic comfort shoes to the popular import(SAS$^{(R)}$) to gain a better understanding in biomechanical characteristics for shoe design for the elderly. For each shoe type, morphologic dimensions, shock absorption, and flexibility were assessed. From subjects(n = 20, $72.4{\pm}5.5$ years, $67.7{\pm}7.9$ kg), mean peak pressure(MPP) and contact area(CA) at the plantar surface were analyzed. The domestic shoes reflecting anatomic contour of the plantar surfaces of Asians resulted in wider CA(by 30.4 $cm^2$), higher shock absorption(by 2.4%) and stiffness(by 0.5 N/mm) than the import. With the domestic shoes, significantly less MPPs were found at the forefoot(by 42~49%) regions(p < .05) and higher CA was noted additionally at hallux and lessor toes(by 26~63%). More anatomically-contoured insole and favorable mechanical characteristics may help reduce the plantar pressures more effectively and more evenly, especially across the central forefoot and midfoot regions of the plantar surface, especially for the design of the comfort shoes for the elderly.

Changes in Medio-lateral Knee Joint Reaction Force of Patients with Over-pronation during Gait Due to Insole Parameters - A Case Study (인솔 설계 변수에 따른 발목 과-회내 환자의 보행 시 좌우 방향 무릎 관절 하중의 변화 - 사례 연구)

  • Lee, Sang-Jun;Baek, Seung-Yeob;Son, Jin-Kyou;Kim, Dong-Wook;Lee, Kun-Woo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.3
    • /
    • pp.149-155
    • /
    • 2012
  • The ankle over-pronation causes the mechanical overloading transferred to proximal areas (i.e. knees or hips) over time. Thus, the over-pronation is recognized as a contributory factor in a wide variety of musculo-skeletal pathologies in lower extremities. Commonly, over-pronated ankles are treated using specially designed insoles that support medial heels and correct the posture of lower limbs. However, the biomechanical effects of the insoles are not yet fully understood, so there still are controversies whether such insoles really have clinical significance. In this study, in order to verify the effects of insoles and determine the best shape of the insoles, we examined how the medio-lateral knee joint reaction force changes due to insole conditions through a case study about a subject. As a result, it is revealed that the medial heel post, which drastically reduced the peak medio-lateral knee joint reaction force, has significant effects on the gait of the over-pronated patients. However, in case that the arch support is combined together, the positive effect of the medial heel post may rather decrease.

Comparative Biomechanical Study of Self-tapping and Non Self-tapping Tapered Dental Implants in Artificially Simulated Quality 2 Bone

  • Baek, Yeon-Wha;Kim, Duck-Rae;Park, Ju-Hee;Lim, Young-Jun
    • Journal of Korean Dental Science
    • /
    • v.4 no.2
    • /
    • pp.52-58
    • /
    • 2011
  • Purpose: Modifications of implant design have been related to improving initial stability. The purpose of this study was to investigate their respective effect on initial stability between two tapered implant systems (self-tapping vs. non-self-tapping) in medium density bone using three different analytic methods. Materials and Methods: Self-tapping implant (GS III$^{(R)}$; Osstem Implant Co., Busan, Korea) and non-self-tapping implant (Replace Select$^{(R)}$; Nobel Biocare, G$\H{o}$teborg, Sweden) were investigated. In Solid rigid polyurethane blocks of artificially simulated Quality 2 bone, each of the 5 implants was inserted according to the manufacturer's instructions for medium-bone drilling protocol. Evaluation of initial stability was carried out by recording the maximum insertion torque (IT) and performing the resonance frequency analysis (RFA), and the pull-out test. Results: The IT and RFA values of self-tapping implant were significantly higher than those of non self-tapping implant (P=.009 and P=.047, respectively). In the pull-out values, no significant differences were found in implants between two groups (P=.117). Within each implant system, no statistically significant correlation was found among three different outcome variables. Conclusions: These findings suggest that design characteristics of implant geometry significantly influence the initial stability in medium bone density.

Comparison of the effects of joint mobilization, gym ball exercises, and breathing exercises on breathing pattern disorders and joint position sense in persons with chronic low back pain

  • Lim, Chae-Gil
    • Physical Therapy Rehabilitation Science
    • /
    • v.9 no.1
    • /
    • pp.25-35
    • /
    • 2020
  • Objective: To compare the effects of joint mobilization, gym ball exercises, and breathing exercises on breathing pattern disorders and joint position sense in persons with chronic lower back pain. Design: Three-group pretest-posttest design. Methods: Thirty-six individuals with chronic low back pain who were undergoing a postural correction and vertebral movement at a rehabilitation center participated in this study. The subjects were randomly divided into the joint mobilization group (n=12), gym ball exercises group (n=12), and the breathing exercises group (n=12). The exercises were applied for 40 minutes a day, twice a week for a total of 12 weeks. Measurement tools included the end-tidal CO2 (ETCO2), respiration rate (RR), breath hold time, Nijmegen Questionnaire (NQ), excursion, and joint position error (JPE). Results: The groups showed significant differences in the ETCO2, RR, NQ, Excursion and JPE test before and after the intervention (p<0.05). The differences between the groups were significant in the group that received the gym ball and breathing exercises in ETCO2 and RR (p<0.05). The differences between the groups were most significant in the group that received breathing exercises in NQ and excursion (p<0.05). The differences between the groups were significant in the group that received the gym ball and breathing exercises in JPE Lt. and Rt. (p<0.05). Conclusions: All three interventions had a significant impact on the biomechanical changes, respiratory variables, and joint position sense in participants with chronic lower back pain. Breathing exercises were found to be particularly effective in improving respiratory parameters.

A Study on the quantitative Evaluation of Spasticity Implementing Pendulum Test (진자실험을 통한 경직의 정량적 평가에 관한 연구)

  • Lim H.K.;Cho K.H.;Kim B.O.;Chae J.M.;Lee Y.S.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.3 s.61
    • /
    • pp.303-309
    • /
    • 2000
  • An accurate quantitative biomechanical evaluation for the spasticity caused by the disorder of central nervous system was made in this study. A sudden leg dropper was designed to generate objective testing environment at every trial. 3-dimensional motion analysis system(Elite. B.T.S. Italy) was used to measure kinematic data which were angle. and angular velocity of a lower limb. A program was developed to analyze the kinematic data of lower limb motion. and dynamic EMG data at the same time. To evaluate spasticity quantitatively. total 26 parameters including 14 parameters newly driven were analyzed, and statistical analysis were made for bilateral correlations. Results showed possibility to make accurate quantitative and objective evaluation for spasticity with various new parameters using new devices and program.

  • PDF

A Study on Body Temperature Measurement of Woven Textile Electrode Using Lock-In-Amp based on Microprocessor (마이크로 프로세서 기반 Lock-In-Amp를 이용한 텍스타일 직물전극의 체온 측정에 관한 연구)

  • Lee, Kang-Hwi;Lee, Sung-Su;Lee, Jeong-Whan;Song, Ha-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1141-1148
    • /
    • 2017
  • Generally, a thermistor made by sintering a metal oxide is widely used to measure the ambient temperature. This thermistor is widely used not only for industrial use but also for medical use because of its excellent sensitivity, durability, temperature change characteristics and low cost. In particular, the normal body temperature is 36.9 degrees relative to the armpit temperature, and it is most closely related to the circulating blood flow. Previous studies have shown that body temperature changes during biomechanical changes and body temperature changes by anomalous signs or illnesses. Therefore, in this study, we propose a Lock-In-Amp design to detect minute temperature changes of clothing and thermistor wired by a preacher as a method to regularly measure body temperature in daily life. Especially, it is designed to measure the minute resistance change of the thermistor according to body temperature change even in a low-cost microprocessor environment by using a micro-processor-based Lock-In-Amp, and a jacquard and the thermistor is arranged so as to be close to the side, so that the reference body temperature can be easily measured. The temperature was measured and stored in real time using short-range wireless communication for non - restraint temperature monitoring. A baby vest was made to verify its performance through temperature experiments for infants. The measurement of infant body temperature through the existing skin sensor or thermometer has limitations in monitoring infant body temperature for a long time without restriction. However, it can be overcome by using the embroidery fabric based micro temperature monitoring wireless monitoring device proposed in this study.

Cut-Through versus Cut-Out: No Easy Way to Predict How Single Lag Screw Design Cephalomedullary Nails Used for Intertrochanteric Hip Fractures Will Fail?

  • Garrett W. Esper;Nina D. Fisher;Utkarsh Anil;Abhishek Ganta;Sanjit R. Konda;Kenneth A. Egol
    • Hip & pelvis
    • /
    • v.35 no.3
    • /
    • pp.175-182
    • /
    • 2023
  • Purpose: This study aims to compare patients in whom fixation failure occurred via cut-out (CO) or cut-through (CT) in order to determine patient factors and radiographic parameters that may be predictive of each mechanism. Materials and Methods: This retrospective cohort study includes 18 patients with intertrochanteric (IT) hip fractures (AO/OTA classification 31A1.3) who underwent treatment using a single lag screw design intramedullary nail in whom fixation failure occurred within one year. All patients were reviewed for demographics and radiographic parameters including tip-to-apex distance (TAD), posteromedial calcar continuity, neck-shaft angle, lateral wall thickness, and others. Patients were grouped into cohorts based on the mechanism of failure, either lag screw CO or CT, and a comparison was performed. Results: No differences in demographics, injury details, fracture classifications, or radiographic parameters were observed between CO/CT cohorts. Of note, a similar rate of post-reduction TAD>25 mm (P=0.936) was observed between groups. A higher rate of DEXA (dual energy X-ray absorptiometry) confirmed osteoporosis (25.0% vs. 60.0%) was observed in the CT group, but without significance. Conclusion: The mechanism of CT failure during intramedullary nail fixation of an IT fracture did not show an association with clinical data including patient demographics, reduction accuracy, or radiographic parameters. As reported in previous biomechanical studies, the main predictive factor for patients in whom early failure might occur via the CT effect mechanism may be related to bone quality; however, conduct of larger studies will be required in order to determine whether there is a difference in bone quality.

Analysis of Spinal Stability Affected by Working Height, Safety Handrail and Work Experience in Using Movable Scaffold (이동식 틀비계 사용 작업 시 작업대 높이, 안전난간 유무, 숙련도에 따른 척추 안정성 분석)

  • Kim, Jung-Yong;Min, Seung-Nam;Sung, Si-Hoon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.347-356
    • /
    • 2010
  • The purpose of this study is to analyze the spine stability by comparing muscle activation in various scaffold working conditions. The independent working conditions were designed by two levels of working height, existence and absence of safety handrail, and the two levels of expertise. The corresponding activities of the agonist and antagonist muscles of spine were simultaneously recorded by using EMG. As results, novice worker showed increased muscle activity while doing the task on the 2nd floor, absence of handrail. And expert showed the increase of co-contraction while working on the 2nd floor without handrail. Such co-contraction was found to increase the spine stability when the working condition become risky. On the other hand, the co-contraction was prolonged, the spine muscle fatique and disc pressure could be increased, which would increase the risk of musculo-skeletal disorder. The results of co-contraction in this study indicates that the motor control system responds to maintain the stability of the spine particularly when workers cognitively recognize the danger of falling or imbalance. This study also quantitatively accounted for the biomechanical cause of LBP among workers who has to prevent themselves from falling. Therefore, if can be said that safe environment preventing falling can also prevent workers from MSDs as well. Such knowledge can be applied to design ergonomic workplace environment as well as movable scaffold.

Three-dimensional finite element analysis of platform switched implant

  • Moon, Se-Young;Lim, Young-Jun;Kim, Myung-Joo;Kwon, Ho-Beom
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.1
    • /
    • pp.31-37
    • /
    • 2017
  • PURPOSE. The purpose of this study was to analyze the influence of the platform switching concept on an implant system and peri-implant bone using three-dimensional finite element analysis. MATERIALS AND METHODS. Two three-dimensional finite element models for wide platform and platform switching were created. In the wide platform model, a wide platform abutment was connected to a wide platform implant. In the platform switching model, the wide platform abutment of the wide platform model was replaced by a regular platform abutment. A contact condition was set between the implant components. A vertical load of 300 N was applied to the crown. The maximum von Mises stress values and displacements of the two models were compared to analyze the biomechanical behavior of the models. RESULTS. In the two models, the stress was mainly concentrated at the bottom of the abutment and the top surface of the implant in both models. However, the von Mises stress values were much higher in the platform switching model in most of the components, except for the bone. The highest von Mises values and stress distribution pattern of the bone were similar in the two models. The components of the platform switching model showed greater displacement than those of the wide platform model. CONCLUSION. Due to the stress concentration generated in the implant and the prosthodontic components of the platform switched implant, the mechanical complications might occur when platform switching concept is used.