• Title/Summary/Keyword: Biomechanical Method

Search Result 236, Processing Time 0.028 seconds

Force Analysis of Wrist Joint to Develop Wrist Implant and Mechanical Hand Using Optimization Technique and Finite Element Method (인공수근관절과 의수를 개발하기 위한 최적설계법과 유한요소법에 의한 수근관절의 역학적해석)

  • Jung-Soo Han
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.3
    • /
    • pp.178-184
    • /
    • 1997
  • Many mathematical techniques have been developed to determine the muscle forces and force distribution in biomechanical human model, because it is so important to understand internal forces resisting external loading. However, a three-dimensional mathematical model of wrist joint, which is essential to develop solid modeling and artificial wrist joint, has not been well developed. This study proposed to define three-dimensional mathematical model of distal radius and ulna of the human wrist and to develop a detailed two-dimensional finite element through comparisons to existing analytical models and experimental tests. This mathematical model were accurately recreated, allowing the internal tendon force as well as force transmission and distribution through the distal radios and ulna during dynamic loadings. The results found in this study indicate and support the findings of other investigator that cyclic loading condition results in higher compression force on distal radius and ulna and may be source of wrist disorder.

  • PDF

A Study on Effects of EGCG and Design Parameter for Drug-Eluting Biodegradable Polymer Stents (약물-용출 생분해성 고분자 스텐트를 위한 EGCG와 디자인 파라미터의 영향에 대한 연구)

  • Jung, T.G.;Lee, J.H.;Lee, J.J.;Hyon, S.H.;Han, D.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.111-116
    • /
    • 2013
  • Finite element analysis(FEA) has been extensively applied in the analyses of biomechanical properties of stents. Geometrically, a closed-cell stent is an assembly of a number of repeated unit cells and exhibits periodicity in both longitudinal and circumferential directions. This study concentrates on various parameters of the FEA models for the analysis of drug-eluting biodegradable polymeric stents for application to the treatment of coronary artery disease. In order to determine the mechanical characteristics of biodegradable polymeric stents, FEA was used to model two different types of stents: tubular stents(TS) and helicoidal stents(HS). For this modeling, epigallocatechin-3-O-gallate (EGCG)-eluting poly[(L-lactide-co-${\varepsilon}$-caprolactone), PLCL] (E-PLCL) was chosen as drug-eluting stent materials. E-PLCL was prepared by blending PLCL with 5% EGCG as previously described. In addition, the effects of EGCG blending on the mechanical properties of PLCL were investigated for both types of stent models. EGCG did not affect tensile strength at break, but significantly increased elastic modulus of PLCL. It is suggested that FEA is a cost-effective method to improve the design of drug-eluting biodegradable polymeric stents.

3D Modeling of Safety Leg Guards Considering Skin Deformation and shape (피부길이변화를 고려한 3차원 다리보호대 모델링)

  • Lee, Hyojeong;Eom, Ran-i;Lee, Yejin
    • Korean Journal of Human Ecology
    • /
    • v.24 no.4
    • /
    • pp.555-569
    • /
    • 2015
  • During a design process of a protective equipment for sports activities, minimizing movement restrictions is important for enhancing its functions particularly for protection. This study presents a three-dimensional(3D) modeling methodology for designing baseball catcher's leg guards that will allow maximum possible performance, while providing necessary protection. 3D scanning is performed on three positions frequently used by a catcher during the course of a game by putting markings on the subject's legs at 3cm intervals : a standing, a half squat with knees bent to 90 degrees and 120 degrees of knee flexion. Using data obtained from the 3D scan, we analyzed the changes in skin length, radii of curvatures, and cross-sectional shapes, depending on the degree of knee flexion. The results of the analysis were used to decide an on the ideal segmentation of the leg guards by modeling posture. Knee flexions to 90 degrees and to $120^{\circ}$ induced lengthwise extensions than a standing. In particular, the vertical length from the center of the leg increases to a substantially higher degree when compared to those increased from the inner and the outer side of the leg. The degree of extension is varied by positions. Therefore, the leg guards are segmented at points where the rate of increase changed. It resulted in a three-part segmentation of the leg guards at the thigh, the knee, and the shin. Since the 120 degree knee-flexion posture can accommodate other positions as well, the related 3D data are used for modeling Leg Guard (A) with the loft method. At the same time, Leg Guard (B) was modeled with two-part segmentation without separating the knee and the shin as in existing products. A biomechanical analysis of the new design is performed by simulating a 3D dynamic analysis. The analysis revealed that the three-part type (A) leg guards required less energy from the human body than the two-part type (B).

3-D Finite Element Analysis of Acetabular Reconstruction of THR (인공고관절 전치환술에 있어서 비구 재건 술에 관한 3차원 유한요소해석)

  • Ryu, J.C.;Mun, M.S.;Kim, G.S.;Yoo, M.C.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.11
    • /
    • pp.34-38
    • /
    • 1995
  • Using a 3-D finite element method (FEM), the biomechanical characteristics of a threaded truncated acetabular component and a porous coated hemispherical acetabular component were studied. The Von-Mises stress/strain patterns in the acetabulum reconstructed with these two different types of cementless acetabular cups were investigated. The geometry and dimensions of human hemi-pelvis used in the present shape modeling for finite element analysis were scanned with a 3-D laser scanner(TDS-9000, Cyberware, USA). The scanned data was numerically handled with a shape modelling software 'Pro-Engineer'. Using 19836, 16853 tetrahedral elements, respectively, the stress and displacement field of the acetabulum reconstructed with the two different types of the acetabular components were computed. While the hemi-sphere component was found to show a relatively similar stress/strain patterns to those in the normal hip, the results with the threaded cup showed a considerably different patterns from those in the normal condition. Several regions in cancellous bone near the threads and the edge of the truncated cup was found to be overstressed, especially in the superior-lateral part of the acetabulum. It was postulated that the excessive reaming-out of subchondral bone layer when the truncated cup was used can cause the presence of these overstressed regions of cancellous bone. This theoretical prediction for the implanted acetabulum appeared to consistent with the pathological observation of proximal/medial migration of the threaded truncated acetabular prostheses in the previous publications.

  • PDF

Radiologic Evaluation of Proper Pedicle Screw Placement after Pedicle Screw Fixation in Degenerative Lumbar Disc Disease

  • Ju, Sun-Min;Kim, Young-Soo;Kim, Sung-Bum;Ko, Yong;Oh, Seong-Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.38 no.4
    • /
    • pp.265-268
    • /
    • 2005
  • Objective : With the increasing popularity of pedicle screw fixation devices for several indications, the safety and reliability of screw insertion in the small pedicle has become a major issue. Many studies have investigated the accuracy of screw placement after pedicle screw fixation using various method. The reported displacement rates have been very different. The purpose of the study is to investigate the proper placement of pedicle screw insertion in the lumbar spine on 26 consecutive patients. Methods : Between September and December 2003, 26 consecutive patients [16women and 10men] were analyzed after transpedicular screw fixation of the lumbar and lumbosacral spine. After pedicle screw fixation in this study, 2-mm slices of CT scan were performed in all patients to detect caudal and cranial deviation of screw and medial and lateral deviation. Pedcile screw placement related complication was evaluated clinically. Results : A total of 144 inserted pedicle were analyzed in 26patients, and 58pedicle screws [40.3%] were detected to be improper placement. There were 14level [9.0%] of caudal or cranial deviation and 44level [30.6%] of medial or lateral deviation to the pedicle. Extra-pedicle placement was found on 4levels [2.7%] with only lease of neurologic injury. Conclusion : Proper screw placement, though complication rate is low, is important not only for clinical symptom but also for biomechanics. Further study for screw placement related biomechanical changes is needed.

Free Hand Insertion Technique of S2 Sacral Alar-Iliac Screws for Spino-Pelvic Fixation : Technical Note, Acadaveric Study

  • Park, Jong-Hwa;Hyun, Seung-Jae;Kim, Ki-Jeong;Jahng, Tae-Ahn
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.6
    • /
    • pp.578-581
    • /
    • 2015
  • A rigid spino-pelvic fixation to anchor long constructs is crucial to maintain the stability of long fusion in spinal deformity surgery. Besides obtaining immediate stability and proper biomechanical strength of constructs, the S2 alar-iliac (S2AI) screws have some more advantages. Four Korean fresh-frozen human cadavers were procured. Free hand S2AI screw placement is performed using anatomic landmarks. The starting point of the S2AI screw is located at the midpoint between the S1 and S2 foramen and 2 mm medial to the lateral sacral crest. Gearshift was advanced from the desired starting point toward the sacro-iliac joint directing approximately $20^{\circ}$ angulation caudally in sagittal plane and $30^{\circ}$ angulation horizontally in the coronal plane connecting the posterior superior iliac spine (PSIS). We made a S2AI screw trajectory through the cancellous channel using the gearshift. We measured caudal angle in the sagittal plane and horizontal angle in the coronal plane. A total of eight S2AI screws were inserted in four cadavers. All screws inserted into the iliac crest were evaluated by C-arm and naked eye examination by two spine surgeons. Among 8 S2AI screws, all screws were accurately placed (100%). The average caudal angle in the sagittal plane was $17.3{\pm}5.4^{\circ}$. The average horizontal angle in the coronal plane connecting the PSIS was $32.0{\pm}1.8^{\circ}$. The placement of S2AI screws using the free hand technique without any radiographic guidance appears to an acceptable method of insertion without more radiation or time consuming.

Unilateral C1 Lateral Mass and C2 Pedicle Screw Fixation for Atlantoaxial Instability in Rheumatoid Arthritis Patients : Comparison with the Bilateral Method

  • Paik, Seung-Chull;Chun, Hyoung-Joon;Bak, Koang Hum;Ryu, Jeil;Choi, Kyu-Sun
    • Journal of Korean Neurosurgical Society
    • /
    • v.57 no.6
    • /
    • pp.460-464
    • /
    • 2015
  • Objective : Bilateral C1 lateral mass and C2 pedicle screw fixation (C1LM-C2P) is an ideal technique for correcting atlantoaxial instability (AAI). However, the inevitable situation of vertebral artery injury or unfavorable bone structure may necessitate the use of unilateral C1LM-C2P. This study compares the fusion rates of the C1 lateral mass and C2 pedicle screw in the unilateral and bilateral methods. Methods : Over five years, C1LM-C2P was performed in 25 patients with AAI in our institute. Preoperative studies including cervical X-ray, three-dimensional computed tomography (CT), CT angiogram, and magnetic resonance imaging were performed. To evaluate bony fusion, measurements of the atlanto-dental interval (ADI) and CT scans were performed in the preoperative period, immediate postoperative period, and postoperatively at 1, 3, 6, and 12 months. Results : Unilateral C1LM-C2P was performed in 11 patients (44%). The need to perform unilateral C1LM-C2P was due to anomalous course of the vertebral artery in eight patients (73%) and severe degenerative arthritis in three patients (27%). The mean ADI in the bilateral group was 2.09 mm in the immediate postoperative period and 1.75 mm in 12-months postoperatively. The mean ADI in the unilateral group was 1.82 mm in the immediate postoperative period and 1.91 mm in 12-months postoperatively. Comparison of ADI measurements showed no significant differences in either group (p=0.893), and the fusion rate was 100% in both groups. Conclusion : Although bilateral C1LM-C2P is effective for AAI from a biomechanical perspective, unilateral screw fixation is a useful alternative in patients with anatomical variations.

Unilateral Posterior Atlantoaxial Transarticular Screw Fixation in Patients with Atlantoaxial Instability : Comparison with Bilateral Method

  • Hue, Yun-Hee;Chun, Hyoung-Joon;Yi, Hyeong-Joong;Oh, Seong-Hoon;Oh, Suck-Jun;Ko, Yong
    • Journal of Korean Neurosurgical Society
    • /
    • v.45 no.3
    • /
    • pp.164-168
    • /
    • 2009
  • Objective : Bilateral C1-2 transarticular screw fixation (TAF) with interspinous wiring has been the best treatment for atlantoaxial instability (AAI). However, several factors may disturb satisfactory placement of bilateral screws. This study evaluates the usefulness of unilateral TAF when bilateral TAF is not available. Methods : Between January 2003 and December 2007, TAF was performed in 54 patients with AAI. Preoperative studies including cervical x-ray, three dimensional computed tomogram, CT angiogram, and magnetic resonance image were checked. The atlanto-dental interval (ADI) was measured in preoperative period, immediate postoperatively, and postoperative 1, 3 and 6 months. Results : Unilateral TAF was performed in 27 patients (50%). The causes of unilateral TAF were anomalous course of vertebral artery in 20 patients (74%), severe degenerative arthritis in 3 (11%), fracture of C1 in 2, hemangioblastoma in one, and screw malposition in one. The mean ADI in unilateral group was measured as 2.63 mm in immediate postoperatively, 2.61 mm in 1 month, 2.64 mm in 3 months and 2.61 mm in 6 months postoperatively. The mean ADI of bilateral group was also measured as following; 2.76 mm in immediate postoperative, 2.71 mm in 1 month, 2.73 mm in 3 months, 2.73 mm in 6 months postoperatively. Comparison of ADI measurement showed no significant difference in both groups, and moreover fusion rate was 100% in bilateral and 96.3% in unilateral group (p=0.317). Conclusion : Even though bilateral TAF is best option for AAI in biomechanical perspectives, unilateral screw fixation also can be a useful alternative in otherwise dangerous or infeasible cases through bilateral screw placement.

3-Dimensional Analysis of the Running Motion in the Max-Velocity Phase and the Fatigue Phase During 400m Sprint by Performed Elementary School Athletes (달리기시 최고 속도 및 피로 구간의 3차원 동작 분석)

  • Bae, Sung-Jee
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.4
    • /
    • pp.115-124
    • /
    • 2006
  • This study was conducted to investigate the running motion in the max-velocity phase(150-160m) and the fatigue phase(350-360m) during 400m sprint by performed elementary school athletes. Eighteen elementary school male athletes who achieved at least the 3rd place in the sprint at the Korea Gangwon-Do elementary school track and field meetings during 2004 and 2005 were selected as subjects. The running motions performed by the subjects were recorded using two 8mm high speed cameras at the nominal speed of 100 frames per second. The Direct Linear Transformation technique was adopted from the beginning of filming to the final stage of data extraction. KWON 3D motion analysis package program was used to compute the 3 Dimensional coordinates, smoothing factor in which lowpass filtering method was used and cutoff frequency was 6.0 Hz. The movement patterns during foot touchdown and takeoff for the running stride were related with the biomechanical consideration. Within the limitations of this study it is concluded: In order to increase running velocity, several conditions must be fullfilled at the instant of leg touchdown and takeoff during the fatigue phase(350-360m). First, the body C.O.G(Center of Gravity) height should be raised at the instant of leg touchdown and takeoff during the fatigue phase. Second, the foot contact time should be shortened and the takeoff distance should be increased at the foot takeoff during the fatigue phase. Third, the shank angular velocity with respect to a transverse axis through the center of gravity should be increased during the leg touchdown and takeoff in the fatigue phase. Forth, the active landing style described as clawing the ground with the sole of the foot should be performed during the leg touchdown and takeoff in the fatigue phase) phase. Fifth, In order to increase running velocity in the fatigue phase while taking a slightly greater leg knee angle and body lean angle within the range of the subject's running motion during the fatigue phase would result in greater flight distance.

Biomechanical Validation about Dumbbell Curl Exercise Effects of Virtual Environment (가상환경 변화에 따른 덤벨 컬 운동효과에 관한 운동역학적 검증)

  • Hong, Ah Reum;Kim, Jai Jung;So, Jae Moo
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.1
    • /
    • pp.111-119
    • /
    • 2020
  • Objective: The purpose of this study is to apply exercise learning effect to various subjects through training effect and information accumulation based on verification of the effect on dumbbell curl exercises applied with virtual reality. Method: To analyze the effect on the dumbbell curl exercise in the virtual environment, a total of 20 persons with 10 males and 10 females who does not have orthopedics diseases were selected. The dumbbell weight of the subjects was set to a weight of 70% strength of 1RM. At this time, the virtual environment situation was set to four types; presence/absence of virtual environment, preferred colors, and unfavorable colors to perform dumbbell curl exercise. The anaysis of muscle activity was conducted by adhering four surface electrodes (Biceps Brachii, Triceps Brachii, Brachioradialis Muscle, Extensor Carpi Radialis Longus Muscle) on the right upper limbs. Independent sample t-test using SPSS (24.0) program was carried out to analyze average values and standard deviations for each variable depending on the presence/absence of virtual environments and changes in color (preferred colors, unfavorable colors) and the level of significance was set to a=.05. Results: In the eccentric contraction, males showed high muscle activity in the Biceps Brachii under virtual reality. On the other hand, females had high muscle activity in the Biceps Brachii in the absence of virtual reality. Also, in case of a change of colors in the virtual environment, females had the high muscle activity in the unfavorable color in the eccentric contraction. Conclusion: During the dumbbell curl exercise, results of different exercises present depending on gender. When males put VR on and performs a basic dumbbell curl exercise, the effect of Biceps presents Brachii for them while exercising in unfavorable colors. However, since it is the basic research data of muscle exercise using virtual reality, it is necessary to verify whether or not it is effective for myopachynsis through long-term training rather than unity.