• Title/Summary/Keyword: Biomechanical

Search Result 961, Processing Time 0.022 seconds

Analysis of Biomechanical Changes According to Mechanical Alignment of the Lower Limbs when Gait with a Material Handling (중량물 취급 보행 시 하지의 역학적 정렬에 따른 생체역학적 변화 분석)

  • Lee, Kyung-Ill;Lee, Chul-Gab;Song, Han-Soo;Hong, Wan-Ki
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.2
    • /
    • pp.183-190
    • /
    • 2015
  • Objective : Walking with a Material handling is an activity frequently undertaken by agricultural workers in Korea, due to the nature of their work. This study aimed to investigate differences in biomechanical variables according to the mechanical alignment of the lower limbs when walking with a heavy load, and to use this as basic data in the design of various working environments to reduce the skeletomuscular burden on the knee joint. Method : The study subjects comprised of 22 right-foot dominant adult men and women aged between 20 and 23 years. The subjects were divided into a varus or valgus group according to the mechanical alignment of the lower limb by using radiographic findings. The subjects walked without any load and with a load of 10%, 20%, or 30% of their body weight held in front of them. The Kwon3d XP program was used to calculate biomechanical variables. Results : The flexion/extension moment of the knee joint showed a decreasing trend with increased load, irrespective of the mechanical alignment of the lower limb, while the varus group did not show normal compensatory action when supported by one leg at the point of maximum vertical ground reaction force. In addition, in terms of the time taken, subjects showed no difficulties in one-foot support time up to 20%/BW, but at 30%/BW, despite individual differences, there was an increase in single limb. The increased load resulted in a decrease in the ratio of standing phase to ensure physical stability. The valgus group showed a trend of increasing the stability of their center of mass with increasing load, through higher braking power in the early standing phase. Conclusion : In conclusion, although there was no statistical difference in biomechanical variables according to the mechanical alignment of the lower limbs, the varus group showed a more irregular walking pattern with a Material handling than the valgus group, partially proving the association between lower limb alignment and walking with a Material handling.

BIOMECHANICAL EVALUATION ON BONE REGENERATION IN MANDIBULAR DISTRACTION OSTEOGENESIS COMBINED WITH COMPRESSION STIMULATION (하악골 신장술에서 압축자극을 통한 골 재생방식에 대한 생체 역학적 평가)

  • Heo, June;Kim, Uk-Kyu;Hwang, Dae-Seok;Kim, Yong-Deok;Shin, Sang-Hun;Chung, In-Kyo;Kim, Cheol-Hun;Yun, Seok-Young
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.5
    • /
    • pp.470-478
    • /
    • 2007
  • The purpose of this study was to investigate the clinical, biomechanical, and histologic changes in new distraction osteogenesis(DO) technique combined with a compression stimulation in accordance to different compression-distraction force ratio. 23 adult male rabbits underwent open-osteotomy at the mandibular body area and a external distraction device was applied. In the control group of 8 rabbits, only a 8 mm of distraction was performed by conventional DO technique. In an experimental group of 15 rabbits, a distraction followed by a compression force was performed according to the ratio of compression-distraction suggested by authors. The rate of experimental group I was set up as a 2 mm compression versus 10 mm distraction and the rate of experimental group II was set up as a 3 mm compression versus 11 mm distraction. All the rabbits were sacrificed for a gross finding, biomechanical, histomorphometric and histologic findings at the time of 55 days from the operation day. The results were as follows: 1. On the gross findings, because all rabbits had a sufficient healing time, every distracted new bone had good bone quality and we could not find any difference among all three groups. 2. In the histologic findings, rapid bone maturation(wide lamellar bone formation in the cancellous and cortical bone areas) was observed in two experimental groups compared to the control group. 3. On the bone density tests, the experimental group II showed higher bone density than the other experimental group and control group(control group-$0,2906g/cm^2$, experimental group I-$0.2961g/cm^2$, experimental group II-$0.3328g/cm^2$). 4. On the biomechanical tests, the experimental group II had significantly higher bone microhardness than the other experimental group and control group(control group-252.7 MPa, experimental group I-263.5 MPa, experimental group II-426.0 MPa). 5. On the microhardness tests, when we compared the hardness ratio of distracted bone versus normal bone, we could find experimental group II had significantly higher hardness ratio than the other experimental group and control group(control group-0.47, experimental group I-0.575, experimental group II-0.80). From this study, we could deduce that the modified distraction osteogenesis method with a compression stimulation might improve the quality of bone regeneration and shorten the consolidation period in comparison with conventional distraction osteogenesis techniques.

Biomechanical Fatigue Analysis of Cervical Plate Systems by using a Computer Simulation Based on Finite Element Method (유한요소법을 이용한 척추 삽입형 경추판 시스템에 대한 생체역학적 피로해석)

  • Kim, Sung-Min;Yang, In-Chul;Cho, Sung-Youn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.8
    • /
    • pp.96-103
    • /
    • 2008
  • In this study, we performed the biomechanical analysis of cervical plate systems by using a computer simulation based on finite element method to derive reliable model by analysis of design variables and fatigue behavior. To simulate the cervical spine movement in-vivo state by surgery, we modeled the cervical plate system which consisted of screws, rings, rivets, and plate and Ultra High Molecular Weight Polyethylene (UHMWPE) Block. The experiment of cervical plate system followed the ASTM F1717 standards that covered the materials and methods for the static and fatigue testing. The result of computer simulation is compared with experimented test. We expected this study is to derive reliable results by analysis of design variables and fatigue behavior for developing a new model.

Biomechanical adaptation of orthodontic tooth movement (임상가를 위한 특집 2 - 교정력에 의한 치아이동과 Biomechanical adaptation)

  • Lee, Syng-Ill
    • The Journal of the Korean dental association
    • /
    • v.51 no.3
    • /
    • pp.138-147
    • /
    • 2013
  • Orthodontic tooth movement is a unique process which tooth, solid material is moving into hard tissue, bone. Orthodontic force in general provides the strain to the PDL and alveolar bone, which in turn generates the interstitial fluid flow(in detail, fluid flow in PDL and canaliculi). As a results of matrix strain, periodontal ligament cells and bone cells are deformed, releasing variety of cytokines, chemokines, and growth factors. These molecules lead to the orthodontic tooth movement(OTM). In these inflammation and tissue remodeling sites, all of the cells could closely communicate with one another, flowing the information for tissue remodeling. To accelerate the rate of OTM in future, local injection of single growth factor(GF) or a combination of multiple GFs in the periodontal tissues might intervene to stimulate the rate of OTM. Corticotomy is effective and safe to accelerate OTM.

The Study on a Biomechanical Model for Automotive Seat Design (자동차 SEAT DESIGN을 위한 BIOMECHANICAL MODEL 연구)

  • 신학수;최출헌
    • Proceedings of the ESK Conference
    • /
    • 1998.04a
    • /
    • pp.149-154
    • /
    • 1998
  • The design of seat is maintaining to final stable posture. The final stable posture is the seated posture in which the force of the pad and spring supporting the body is balanced with the body weight and the bodydoes not sink anyfurther intothe seat. With poorly designed seated seats, your behind maygradually move forward, or localized pressure may result in congestion of the blood or numbness, making you want to move. Therefore, the final stable posture is not maintained. A number of ideas were used in this study will eliminate this problem. In automobile seat design, primary attention has forcused on providing the occupant with a comfortable seat that has sufficient padding and adjuxtments toaccomodate different sizes and postures of people. First of all, whether the process is design-oriented or technology-oriented, the design concept must be human-oriented. The fatigue-alleviating seats which were the primary purpose of this research were studied with a human-oriented approach.

  • PDF

Estimation of anthropometric body dimensions and joint strengths of a worker performing manual materials handling tasks using a multivariate normal simulation model (다변량 정규분포 모의모형을 이용한 물자운반작업을 수행하는 작업자의 인체 치수 및 관절염력의 예측에 관한 연구)

  • 변승남
    • Journal of the Ergonomics Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.63-83
    • /
    • 1993
  • The primary objective of the research is to develop a mathematical method to incorporate the variability of anthropometric body dimensions and joint strengths of individuals in a biomechanical analysis. A multivariate normal simulation model estimated anthropometric body dimensions and joint strengths of the random link-person, based on the assumptions that the vari- ables of body dimensions and joint strengths are correlated and follow normal distributions. Statistical comparative analysis demonstrated that the random link-person represented a more realistic human-like form in an anthropometric sense than the proportional link-person whose body dimensions were estimated proportionally. Estimated joint strengths for the random link-person, however, did not match the measured joint strengths as closely as the estimated body dimensions. The random link-person will allow biomechanical analysis of manual materials handling tasks to be individualized with respect to the anthropometry and a static strength.

  • PDF