• Title/Summary/Keyword: Biomass to Liquid

Search Result 219, Processing Time 0.026 seconds

Selection of High Laccase-Producing Coriolopsis gallica Strain T906: Mutation Breeding, Strain Characterization, and Features of the Extracellular Laccases

  • Xu, Xiaoli;Feng, Lei;Han, Zhenya;Luo, Sishi;Wu, Ai'min;Xie, Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.9
    • /
    • pp.1570-1578
    • /
    • 2016
  • Commercial application of laccase is often hampered by insufficient enzyme stocks, with very low yields obtained from natural sources. This study aimed to improve laccase production by mutation of a Coriolopsis gallica strain and to determine the biological properties of the mutant. The high-yield laccase strain C. gallica TCK was treated with N-methyl-N-nitro-N-nitrosoguanidine and ultraviolet light. Among the mutants isolated, T906 was found to be a high-production strain of laccases. The mutant strain T906 was stabilized via dozens of passages, and the selected ones were further processed for optimization of metallic ion, inducers, and nutritional requirements, which resulted in the optimized liquid fermentation medium MF9. The incubation temperature and pH were optimized to be 30℃ and 4.5, respectively. The mutant strain T906 showed 3-times higher laccase activity than the original strain TCK under optimized conditions, and the maximum laccase production (303 U/ml) was accomplished after 13 days. The extracellular laccase isoenzyme 1 was purified and characterized from the two strains, respectively, and their cDNA sequence was determined. Of note, the laccase isoenzyme 1 transcription levels were overtly increased in T906 mycelia compared with values obtained for strain TCK. These findings provide a basis for C. gallica modification for the production of high laccase amounts.

Optimization of Simultaneous Saccharification and Fermentation of Rice Straw to Produce Butanol (Butanol 생산을 위한 동시 당화 발효법의 최적화)

  • Jun, Young-Sook;Kwon, Gi-Seok;Kim, Byung-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.3
    • /
    • pp.213-218
    • /
    • 1988
  • Studies were made to optimize the simultaneous saccharification and fermentation (SSF) of rice straw to produce butanol using Clostridium acetobutylicum KCTC 1037 and a cellulolytic enzyme preparation from Trichoderma viride. The fermentation was inhibited when the liquid enzyme preparation from Novo was used, whilst a successful fermentation was achieved in the SSF using the enzyme manufactured by Pacific Chemical Co. The minimum cellulase concentration for the successful fermentation of pure cellulose was found to be 4 IU/g of substrate used. Alkaline treatment was better method for the fermentation of rice straw by the system. SSF using 25% alkaline treated rice straw produced 150 mM butanol, 90 mM acetone. On the other hand, fermentation of ball milled rice straw was mainly acidogenic producing 98 mM acetate and 64 mM butyrate with less than 20 mM butanol. These results show that rice straw contains (a) specific inhibitor(s) for solventogenesis which is destroyed or soluble in alkali.

  • PDF

The Prospect of Methanol and Its Meaning (메탄올의 전망(展望)과 그 의미(意味))

  • Uhm, Sung-Jin
    • Applied Chemistry for Engineering
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 1992
  • In this energy and environment conscious age, methanol has come to attention increasingly since the well established process is commercially available to produce methanol from abundant low grade carbonaceous resources ; methane, carbon dioxide, coal and biomass etc. Methanol is a Clean energy source which is a readily storable and transportable liquid. It is elaborated to correlate power generation, city gas and chemical feed stocks including transportation fuel, enhancing the national efficiency of resource utilization as well as reducing the environmental problems for the future via C1 technology. It is emphasized that $CO_2$ could be used to produce methanol as a mean of hydrogen storage as in the nature, which will alleviate the environmental problem such as green house effect.

  • PDF

Effect of Hydrogen Peroxide on Pretreatment of Oakwood in a Percolation Process (Percolation 공정에서 참나무의 전처리에 과산화수소가 미치는 영향)

  • 하석중;김성배;박순철
    • KSBB Journal
    • /
    • v.14 no.3
    • /
    • pp.358-364
    • /
    • 1999
  • The effect of hydrogen peroxide on pretreatment of oakwood was investigated. Reaction temperature was $170^{\circ}C$ and reaction solutions used in pretreatment were aqueous ammonia, sulfuric acid and pure water. When 10% ammonia solution was used, the extents of delignification and hemicellulose recovery were 55% and 26%, respectively. These values were significantly higher as delinigfication and lower as hemicellulose recovery than those of acid hydrolysis. To overcome this problem, hydrogen peroxide was added into ammonia solution stream to increase hemicellulose recovery. But delignification and hemicellulose recovery were not increased as much as hydrogen peroxide loading was increased. And as hydrogen peroxide loading was increased, the decomposition of sugars solubilized from hemicellulose and cellulose were increased. So there were significant differences between the total amount in solid residue and liquid hydrolyzate, and the total amount in the original biomass. It was found that hydrogen peroxide added was reacted with substrate packed mostly in the front part of reactor. In order to increase hemicellulose recovery, it was necessary to treat with acidic solution than with alkali solution. Effect of hydrogen peroxide was higher in water than acid solution.

  • PDF

Dissolved organic matter characteristics and bacteriological changes during phosphorus removal using ladle furnace slag

  • Noh, Jin H.;Lee, Sang-Hyup;Choi, Jae-Woo;Maeng, Sung Kyu
    • Membrane and Water Treatment
    • /
    • v.9 no.3
    • /
    • pp.181-188
    • /
    • 2018
  • A sidestream contains the filtrate or concentrate from the belt filter press, filter backwash and supernatant from sludge digesters. The sidestream flow, which heads back into the sewage treatment train, is about 1-3% less than the influent flow. However, the sidestream can increase the nutrient load since it contains high concentrations of phosphorus and nitrogen. In this study, the removal of PO4-P with organic matter characteristics and bacteriological changes during the sidestream treatment via ladle furnace (LF) slag was investigated. The sidestream used in this study consisted of 11-14% PO4-P and 3.2-3.6% soluble chemical oxygen demand in influent loading rates. LF slag, which had a relatively high $Ca^{2+}$ release compared to other slags, was used to remove $PO_4-P$ from the sidestream. The phosphate removal rates increased as the slag particle size decreased 19.1% (2.0-4.0 mm, 25.2% (1.0-2.0 mm) and 79.9% (0.5-1.0 mm). The removal rates of dissolved organic carbon, soluble chemical oxygen demand, color and aromatic organic matter ($UV_{254}$) were 17.6, 41.7, 90.2 and 77.3%, respectively. Fluorescence excitation-emission matrices and liquid chromatography-organic carbon detection demonstrated that the sidestream treatment via LF slag was effective in the removal of biopolymers. However, the removal of dissolved organic matter was not significant during the treatment. The intact bacterial biomass decreased from $1.64{\times}10^8cells/mL$ to $1.05{\times}10^8cells/mL$. The use of LF slag was effective for the removal of phosphate and the removal efficiency of phosphate was greater than 80% for up to 100 bed volumes.

Metabolic Pathways of Hydrogen Production in Fermentative Acidogenic Microflora

  • Zhang, Liguo;Li, Jianzheng;Ban, Qiaoying;He, Junguo;Jha, Ajay Kumar
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.5
    • /
    • pp.668-673
    • /
    • 2012
  • Biohydrogen production from organic wastewater by anaerobically activated sludge fermentation has already been extensively investigated, and it is known that hydrogen can be produced by glucose fermentation through three metabolic pathways, including the oxidative decarboxylation of pyruvic acid to acetyl-CoA, oxidation of NADH to $NAD^+$, and acetogenesis by hydrogen-producing acetogens. However, the exact or dominant pathways of hydrogen production in the anaerobically activated sludge fermentation process have not yet been identified. Thus, a continuous stirred-tank reactor (CSTR) was introduced and a specifically acclimated acidogenic fermentative microflora obtained under certain operation conditions. The hydrogen production activity and potential hydrogen-producing pathways in the acidogenic fermentative microflora were then investigated using batch cultures in Erlenmeyer flasks with a working volume of 500 ml. Based on an initial glucose concentration of 10 g/l, pH 6.0, and a biomass of 1.01 g/l of a mixed liquid volatile suspended solid (MLVSS), 247.7 ml of hydrogen was obtained after a 68 h cultivation period at $35{\pm}1^{\circ}C$. Further tests indicated that 69% of the hydrogen was produced from the oxidative decarboxylation of pyruvic acid, whereas the remaining 31% was from the oxidation of NADH to $NAD^+$. There were no hydrogen-producing acetogens or they were unable to work effectively in the anaerobically activated sludge with a hydraulic retention time (HRT) of less than 8 h.

Effect of Hydrophilic- and Hydrophobic-Media on the Fermentative Hydrogen Production in Trickling Bed Biofilter (생물학적 수소생산을 위한 Trickling Bed Biofilter에서의 친수성과 소수성 담체의 영향)

  • Jeon, Byung-Seung;Lee, Sun-Mi;Kim, Yong-Hwan;Chae, Hee-Jeong;Sang, Byoung-In
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.465-469
    • /
    • 2006
  • Two mesophilic trickling bed bioreactors filled with two different types of media, hydrophilic- and hydrophobic-cubes, were designed and tested for hydrogen production via anaerobic fermentation of sucrose. Each reactor consisted of a column packed with polymeric cubes and inoculated with heat-treated sludge obtained from anaerobic digestion tank. A defined medium containing sucrose was fed with changing flow rate into the capped reactor, hydraulic retention time and recycle rate. Hydrogen concentrations in gas-phase were constant, averaging 40% for all conditions tested. Hydrogen production rates increased up to $10.5 L{\cdot};h^{-1}{\cdot}L^{-1}$ of reactor when influent sucrose concentrations and recycle rates were varied. Hydrophobic media provided higher value of hydrogen production rate than hydrophilic media at the same operation conditions. No methane was detected when the reactor was under a normal operation. The major fermentation by-products in the liquid effluent of the both trickling biofilters were acetate and butyrate. The reactor filled with hydrophilic media became clogged with biomass and bio gas, requiring manual cleaning of the system, while no clogging occurred in the reactor with hydrophobic media. In order to make long-term operation of the reactor filled with hydrophilic media feasible, biofilm accumulation inside the media in the reactor with hydrophilic media and biogas produced from the reactor will need to be controlled through some process such as periodical backwashing or gas-purging. These tests using trickling bed biofilter with hydrophobic media demonstrate the feasibility of the process to produce hydrogen gas in a trickle-bed type of reactor. A likely application of this reactor technology could be hydrogen gas recovery from pre-treatment of high carbohydrate-containing wastewaters.

  • PDF

Trends and Prospects of Microalgae used for Food (식품에 이용되는 미세조류와 이를 이용한 식품 연구개발 동향 및 전망)

  • Kwak, Ho Seok;Kim, Ji Soo;Lee, Ja Hyun;Sung, Dong Eun
    • Journal of the Korean Society of Food Culture
    • /
    • v.36 no.1
    • /
    • pp.66-75
    • /
    • 2021
  • Microalgae are unicellular microorganisms inhabiting various ecosystems of the world, including marine and freshwater systems and extreme environments. Only a few species have been actively used as food. Microalgae are attracting attention as a means of biological CO2 reduction because they play an important role in absorbing atmospheric CO2 through their rapid growth by photosynthesis in water. Besides, microalgae are considered to be an eco-friendly energy source because they can rapidly produce biomass containing a large quantum of lipids that can be converted into biodiesel. Several microalgae, such as Chlorella spp., Spirulina spp. and Haematococcus spp. have already been commercialized as functional health supplements because they contain diverse nutrients including proteins, vitamins, minerals, and functional substances such as docosahexaenoic acid (DHA), β-glucan, phycocyanin, astaxanthin, etc. Moreover, they have the potential to be used as food materials that can address the protein-energy malnutrition (PEM) which may occur in the future due to population growth. They can be added to various foods in the form of powder or liquid extract for enhancing the quality characteristics of the foods. In this review, we analyzed several microalgae which can be used as food additives and summarized their characteristics and functions that suggest the possibility of a role for microalgae as future food.

Optimization for Alcohol Fermentation by Kluyveromyces marxianus using Jerusalem Artichoke Powder (돼지감자 분말을 이용한 Kluyveromyces marxianus의 알콜올 발효)

  • 채은미;최언호
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.3
    • /
    • pp.265-271
    • /
    • 1991
  • In order to produce alcohol for the alternative energy from dried powder of Jerusalem artichoke was investigated with Kluyveromyces marxianus UCD(FST)55-82, which was reported to assimilate inulin. The optimal condition for the production of ethanol by K. marxianus was elucidated to be incubation temperature of $30^{\circ}C$, initial pH 5.44, agitation of 100 rpm, 1,000 ml of medium in a 2.5l-vessel, anaerobic state, and inoculation of 2.5%(v/v). Addition of antifoam A concentrate(si1icon polymer) of 0.01% and urea of 0.1% increased the concentration of ethanol effectively. The optimized condition showed ethanol concentration of 6.8%(v/v) in Jerusalem artichoke liquid medium, production yield of 91.91% and productivity of 2.71 g/l/hr during the first day and 0.71g ethanol/l/hr during four days of incubation.

  • PDF

Applicability of Fomes fomentariusfor the formation of a mycelial mat (균사체 매트 제작을 위한 말굽버섯의 응용 가능성)

  • Kim, Hyun-Suk;Oh, Deuk-Sil;Jung, Young-Hyun;Shin, Hyun-Jae
    • Journal of Mushroom
    • /
    • v.20 no.3
    • /
    • pp.163-167
    • /
    • 2022
  • Bio-based alternative leathers may be produced from biomass fiber, protein polymers, bacterial cellulose, and mushroom mycelia. Of these components, mushroom mycelia are of greatest interest. In this study, the potential of Fomes fomentariusas a mushroom mycelial mat was confirmed, and the optimal strain for the development of the mycelial mat was determined. Moreover, the quality of the mycelial mat was improved by identifying an efficient culture method to increase productivity. Mutant strains whose independence was verified were obtained by treatment with gamma irradiation under various conditions. Biofilm formation by the resulting strains was examined in sawdust and liquid media and the characteristics of the biofilms were analyzed. The biofilm of the mutant strains showed results that were similar to or better than the biofilms of longevity and cypress mushrooms. These findings are expected to be utilized in future research aimed at discovering new biomaterials using mushroom mycelia.