• Title/Summary/Keyword: Biomass production structure

Search Result 61, Processing Time 0.025 seconds

Productivity and Production Structure of Salix nipponica (선버들의 생산성과 생산구조)

  • Kim, Cheol-Soo;Lee, Pal-Hong;Oh, Kyung-hwan
    • Journal of Wetlands Research
    • /
    • v.1 no.1
    • /
    • pp.61-69
    • /
    • 1999
  • The above ground biomass and annual net productivity of Salix nipponica were estimated by the allometric method in the littoral zone of Parksil-nup wetland, Hapcheon-gun, Gyeongsangnam-do Korea. The density of stems and individuals per hectare were 14,950 and 6,140, respectively and the mean number of stems per individual was 2.43. The proportion of the above ground biomass of stem, branch, and leaf were 59.2%, 28.3% and 12.5%, respectively. The standing crops was 109.7 ton/ha and total phytomass was 926.7 ton in the study area. Annual net production was 25.3 ton/ha estimated from the standing crops and the age structure.

  • PDF

A Study on the Production Structure and Biomass Productivity of Quercus variabilis Natural Forest (굴참나무천연림(天然林)의 생산구조(生産構造) 및 물질생산력(物質生産力)에 관(關)한 연구(硏究))

  • Kim, Si Kyung;Jeong, Jwa Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.70 no.1
    • /
    • pp.91-102
    • /
    • 1985
  • Growth and biomass production of natural stands of Quercus variabilis in relation to tree density were studied to obtain basic guide lines for future tending operation. Two natural stands of Quercus variabilis located at 900m (A stand: 6,600trees/ha, $15.84m^2/ha$, $\frac{19}{17-20}$) and 800m (B stand: 4,300trees/ha, $16.65m^2/ha$, $\frac{20}{17-21}$) elevation in Sancheong, Kyongnam Province were selected for the comparative study and following results were obtained through a sample plot method. After diameter of individual trees in the sample plots was measured, twelve average trees from each diameter class were cut felled to measure dry weight of $W_S$, $W_B$, $W_L$, $W_{Ba}$, and standing biomass and biomass production rates by a allometrior regressions related to $D^2H$. Vertical distribution of leaves along the stems indicated that photosynthesis was carried out 2.2m above the ground in Stand A and 1.2m in Stand B. Maximum photosynthesis was located 4.2m and 6.2m above the ground in Stand A and B, respectively. Leaf area index was 4.25ha/ha for Stand A, and 3.89ha/ha for Stand B. Above-ground standing biomass was 49.51 ton/ha for Stand A and 59.20 ton/ha and net annual production was 6.75 ton/ha/yr. for Stand A and 8.99 ton/ha/yr. for Stand B. The ratio of net annual production to standing biomass was 17.5% for Stand A and 16.7% for Stand B. Net assimilation rate was 2.75kg/kg/yr. for Stand A and 3.58kg/kg/yr. for Stand B. Stem wood production rate was 1.46kg/kg/yr. for Stand A and 2.09kg/kg/yr. for Stand B. Bark production rate was 0.60 kg/kg/yr. for Stand A and 0.34kg/kg/yr. for Stand B. Above data indicated that Stand B utilized growing spaces and sites more efficiently than Stand A. It is concluded chat productivity of natural stands of Quercus variabilis can be enhanced through optimization of basal areas and number of tree per hectare and that sound management of natural oak stands should be based on systematic sampling of the area for periodic productivity estimation.

  • PDF

Metabolic Engineering for Improved Fermentation of L-Arabinose

  • Ye, Suji;Kim, Jeong-won;Kim, Soo Rin
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.339-346
    • /
    • 2019
  • L-Arabinose, a five carbon sugar, has not been considered as an important bioresource because most studies have focused on D-xylose, another type of five-carbon sugar that is prevalent as a monomeric structure of hemicellulose. In fact, L-arabinose is also an important monomer of hemicellulose, but its content is much more significant in pectin (3-22%, g/g pectin), which is considered an alternative biomass due to its low lignin content and mass production as juice-processing waste. This review presents native and engineered microorganisms that can ferment L-arabinose. Saccharomyces cerevisiae is highlighted as the most preferred engineering host for expressing a heterologous arabinose pathway for producing ethanol. Because metabolic engineering efforts have been limited so far, with this review as momentum, more attention to research is needed on the fermentation of L-arabinose as well as the utilization of pectin-rich biomass.

Production of Fuels from an Agricultural by-Product Biomass (농부산물 바이오매스를 이용한 연료물질의 생성)

  • Lee, Jong-Jib
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.1
    • /
    • pp.85-94
    • /
    • 2007
  • Rice straw, produced as an agricultural by-product, is usable biomass as fuels if depolymerized to monomer unit, because the chemical structure are similar to high octane materials found in gasoline. In this study, parameters of thermochemical degradation by solvolysis reaction of rice straw such as the effect of reaction temperature, reaction time and type of solvent on conversion yield and degradation products were investigated. It was found that the effectiveness of the solvent on the solvolysis reaction was as follows; acetone>cresol>butanol. When acetone was used as a solvent, the highest rice straw conversion was observed to be 91.5% at $500^{\circ}C$, 40 min. Combustion heating value of liquid products from thermochemical conversion processes was in the range of 7,380 cal/g. The energy yield and mass yield in acetone-solvolysis of rice straw was as high as 69.0% and 38.2 g-oil/100g-raw material after 40 min of reaction at $350^{\circ}C$. Various aliphatic and aromatic compounds were detected in the rice straw solvolysis products. The major components of the solvolysis products, that could be used as fuel, were 4-methyl-2-pentanone, 3,5,5-trimethyl-2-cyclopentan-1-one as ketones.

Biofuel production from macroalgae toward bio-based economy (바이오 기반 경제를 위한 해조류 유래 바이오 연료 생산)

  • Lim, Hyun Gyu;Kwak, Donghun;Jung, Gyoo Yeol
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.6 no.1
    • /
    • pp.8-16
    • /
    • 2014
  • Macroalgae has been strongly touted as an alternative biomass for biofuel production due to its higher photosynthetic efficiency, carbon fixation rate, and growth rate compared to conventional cellulosic plants. However, its unique carbohydrate composition and structure limits the utilization efficiency by conventional microorganisms, resulting in reduced growth rates and lower productivity. Nevertheless, recent studies have shown that it is possible to enable microorganisms to utilize various sugars from seaweeds and to produce some energy chemicals such as methane, ethanol, etc. This paper introduces the basic information on macroalgae and the overall conversion process from harvest to production of biofuels. Especially, we will review the successful efforts on microbial engineering through metabolic engineering and synthetic biology to utilize carbon sources from red and brown seaweed.

Effects of Daily Herbage Allowance on Sward Structure, Herbage Intake and Milk Production by Dairy Cows Grazing a Pure Perennial Ryegrass Sward

  • Kim, T.H.;An, K.W.;Jung, W.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.10
    • /
    • pp.1383-1388
    • /
    • 2001
  • To explore the factors restricting animal performance in relation to sward structure under a strip-grazing system, measurements of sward factors, herbage intake and milk production at 3 levels of herbage allowance were made on perennial ryegrass (Latium perenne L.) sward for 3 experimental periods. About 29%, 36% and 52% of the biomass offered was removed by grazing in high $(42kg\;OM{\cdot}day^{-1}{\cdot}head^{-1})$, medium $(30kg\;OM{\cdot}day^{-1}{\cdot}head^{-1})$ and low $(18kg\;OM{\cdot}day^{-1}{\cdot}head^{-1})$ herbage allowance plots. Live leaf material was much more affected by grazing under different herbage allowance levels than dead material or leaf sheath. Grazing with a low herbage allowance decreased the proportion of live lamina by 93% and live lamina density by 96% before grazing. The density of dead material plus sheath was decreased by 17% after grazing at a low allowance, while it slightly increased or remained constant in the plots applied with high and medium allowances, respectively. The highly significant (p<0.01) correlations between herbage allowance and proportion (r=0.94) and density (r=0.91) of live lamina in residual sward after grazing were observed. Daily herbage intakes in the plots with high and medium levels of herbage allowance were not significantly different at $15.3kg\;OM{\cdot}head^{-1}$ in average, whereas with low level it decreased to $13.9kg\;OM{\cdot}head^{-1}$. Daily milk production was significantly (p<0.05) declined from $22.3kg{\cdot}head^{-1}$ (at high herbage allowance) to $19.7kg{\cdot}head^{-1}$ (at low herbage allowance). The data obtained clearly indicated that herbage intake and milk production were highly affected by the characteristics of residual sward, which were closely related to the level of herbage allowance.

Identification and Characterization of a New Alkaline SGNH Hydrolase from a Thermophilic Bacterium Bacillus sp. K91

  • Yu, Tingting;Ding, Junmei;Zheng, Qingxia;Han, Nanyu;Yu, Jialin;Yang, Yunjuan;Li, Junjun;Mu, Yuelin;Wu, Qian;Huang, Zunxi
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.4
    • /
    • pp.730-738
    • /
    • 2016
  • est19 is a gene from Bacillus sp. K91 that encodes a new esterase. A comparison of the amino acid sequence showed that Est19 has typical Ser-Gly-Asn-His (SGNH) family motifs and could be grouped into the SGNH hydrolase family. The Est19 protein was functionally cloned, and expressed and purified from Escherichia coli BL21(DE3). The enzyme activity was optimal at 60℃ and pH 9.0, and displayed esterase activity towards esters with short-chain acyl esters (C2-C6). A structural model of Est19 was constructed using phospholipase A1 from Streptomyces albidoflavus NA297 as a template. The structure showed an α/β-hydrolase fold and indicated the presence of the typical catalytic triad Ser49-Asp227-His230, which were further investigated by site-directed mutagenesis. To the best of our knowledge, Est19 is a new member of the SGNH hydrolase family identified from thermophiles, which may be applicable in the industrial production of semisynthetic β-lactam antibiotics after modification.

Optimization of soaking in aqueous ammonia pretreatment of canola residues for sugar production (당 생산을 위한 카놀라 부산물의 암모니아 침지 전처리 공정의 최적화)

  • Yoo, Hah-Young;Kim, Sung Bong;Lee, Sang Jun;Lee, Ja Hyun;Suh, Young Joon;Kim, Seung Wook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.114.1-114.1
    • /
    • 2011
  • Bioenergy production from lignocellulosic biomass and agriculture wastes have been attracted because of its sustainable and non-edible source. Especially, canola is considered as one of the best feedstock for renewable fuel production. Oil extracted canola and its agriculture residues are reuseable for bioethanol production. However, a pretreatment step is required before enzymatic hydrolysis to disrupt recalcitrant lignocellulosic matrix. To increase the sugar conversion, more efficient pretreatment process was necessary for removal of saccharification barriers such as lignin. Alkaline pretreatment makes the lignocellulose swollen through solvation and induces more porous structure for enzyme access. In our previous work, aqueous ammonia (1~20%) was utilized for alkaline reagent to increase the crystallinity of canola residues pretreatment. In this study, significant factors for efficient soaking in aqueous ammonia pretreatment on canola residues was optimized by using the response surface method (RSM). Based on the fundamental experiments, the real values of factors at the center (0) were determined as follows; $70^{\circ}C$ of temperature, 17.5% of ammonia concentration and 18 h of reaction time in the experiment design using central composition design (CCD). A statistical model predicted that the highest removal yield of lignin was 54% at the following optimized reaction conditions: $72.68^{\circ}C$ of temperature, 18.30% of ammonia concentration and 18.30 h of reaction time. Finally, maximum theoretical yields of soaking in aqueous ammonia pretreatment were 42.23% of glucose and 22.68% of xylose.

  • PDF

A Study on the Structure of Biomass Production in Thrifty-Mature Quercus mongolica Stand (신갈나무 장령임분(壯齡林分)의 물질생산(物質生産) 구조(構造)에 관(關)한 연구(硏究))

  • Han, Sang Sup;Kim, Do Young;Sim, Joo Suk
    • Journal of Korean Society of Forest Science
    • /
    • v.81 no.1
    • /
    • pp.1-10
    • /
    • 1992
  • This study was conducted to explain the characters of the structure of biomass production in the thrifty-mature Quercus mongolica stands and investigate the relationships between the leaf weight or leaf area and the sapwood area in the bole. Also we intended to identify the allocation ratio of stem, branches, and leaves or heartwood, sapwood and bark in trees and the characters of productive structure of stem and leaf biomass by the tree height. The results obtained were as follows : 1. The allocation ratio of biomass based on dry weight was 70-84% in stem, 11-25% in branches, and 3-6% in leaves. 2. In the bole, the ratios of composition of heartwood, sapwood, and bark were showed 37-43%, 38-46%, and 16-19%, respectively. 3. The volume of sapmood was exceeded more than that of heartwood in dominant and intermediate trees, while it was reversely appeared in suppressed trees. 4. The weight and area of leases significantly correlated with the sectional area of sapwood in bole (r>0.9. 1% significant level). 5. The ratio of leaf area($m^2$) to sapwood areal($cm^2$), k varied 0.35 to 2.05. 6. The basal diameter and the cross sectional area of a branch significantly correlated with the leaf weight r>0.9. 1% significant level. 7. The leaf weight in a tree is showed a normal distribution curve and the accumulative volume of bole is showed a tapering type.

  • PDF

Size-structure and Primary Productivity of Phytoplankton from Major Lakes in Sumjin and Yeongsan Watershed (섬진강.영산강 수계 주요 호소의 식물플랑크톤 크기구조 및 일차생산력)

  • Yi, Hyang-Hwa;Shin, Yong-Sik;Yang, Sung-Ryull;Chang, Nam-Ik;Kim, Dong-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.3
    • /
    • pp.419-430
    • /
    • 2007
  • Physiochemical factors, phytoplankton biomass (Chl ${\alpha}$) and primary productivity were investigated seasonally in the three lakes of Dongbok, Juam, and Yeongsan during April 2004${\sim}$March 2006. Microphytoplankton dominated (>60%) in Dongbok lake, and phytoplankton biomass was high in the upper area, especially during April 2004, whereas they were high in the lower area during June 2004. In Juam lake, the high phytoplankton biomass in April 2004 was contributed by nanophytoplankton. In Yeongsan lake, chlorophyll a was high in August with high contribution of nanophytoplankton. Primary production was highest in Dongbok lake, and then followed by Yeongsan and Juam lakes. Regression analysis in Dongbok take showed that Chl ${\alpha}$ and primary production had close relations with secchi depth. In Juam lake, phosphate were correlated with the Chl ${\alpha}$, while temperature and TN was correlated with primary production in the lower area. In Yeongsan lake, Chl ${\alpha}$ have positively correlation with TN/TP. Primary production in the upper have high relationship with secchi depth, however, in the lower have high relationship with turbidity. Linear regression analysis showed that nutrients of nitrogen and phosphorus should be reduced for the protections in Juam and Dongbok lakes. We suggested that suspended solids and phytoplankton growth related to turbidity are needed to manage in Yeongsan lake.