• Title/Summary/Keyword: Biomass Fuel

Search Result 363, Processing Time 0.017 seconds

Innovation Technology Development & Commercialization Promotion of R&D Performance to Domestic Renewable Energy (신재생에너지 기술혁신 개발과 R&D성과 사업화 촉진 방안)

  • Lee, Yong-Seok;Rho, Do-Hwan
    • Journal of Korea Technology Innovation Society
    • /
    • v.12 no.4
    • /
    • pp.788-818
    • /
    • 2009
  • Renewable energy refers to solar energy, biomass energy, hydrogen energy, wind power, fuel cell, coal liquefaction and vaporization, marine energy, waste energy, and liquidity fuel made out of byproduct of geothermal heat, hydrogen and coal; it excludes energy based on coal, oil, nuclear energy and natural gas. Developed countries have recognized the importance of these energies and thus have set the mid to long term plans to develop and commercialize the technology and supported them with drastic political and financial measures. Considering the growing recognition to the field, it is necessary to analysis up-to-now achievement of the government's related projects, in the standards of type of renewable energy, management of sectional goals, and its commercialization. Korean government is chiefly following suit the USA and British policies of developing and distributing renewable energy. However, unlike Japan which is in the lead role in solar rays industry, it still lacks in state-directed support, participation of enterprises and social recognition. The research regarding renewable energy has mainly examinedthe state of supply of each technology and suitability of specific region for applying the technology. The evaluation shows that the research has been focused on supply and demand of renewable as well as general energy and solution for the enhancement of supply capacity in certain area. However, in-depth study for commercialization and the increase of capacity in industry followed by development of the technology is still inadequate. 'Cost-benefit model for each energy source' is used in analysis of technology development of renewable energy and quantitative and macro economical effects of its commercialization in order to foresee following expand in related industries and increase in added value. First, Investment on the renewable energy technology development is in direct proportion both to the product and growth, but product shows slightly higher index under the same amount of R&D investment than growth. It indicates that advance in technology greatly influences the final product, the energy growth. Moreover, while R&D investment on renewable energy product as well as the government funds included in the investment have proportionate influence on the renewable energy growth, private investment in the total amount invested has reciprocal influence. This statistic shows that research and development is mainly driven by government funds rather than private investment. Finally, while R&D investment on renewable energy growth affects proportionately, government funds and private investment shows no direct relations, which indicates that the effects of research and development on renewable energy do not affect government funds or private investment. All of the results signify that although it is important to have government policy in technology development and commercialization, private investment and active participation of enterprises are the key to the success in the industry.

  • PDF

Characterization of a Korean Domestic Cyanobacterium Limnothrix sp. KNUA012 for Biofuel Feedstock (토착 남세균 림노트릭스 속 KNUA012 균주의 바이오연료 원료로서의 특성 연구)

  • Hong, Ji Won;Jo, Seung-Woo;Kim, Oh Hong;Jeong, Mi Rang;Kim, Hyeon;Park, Kyung Mok;Lee, Kyoung In;Yoon, Ho-Sung
    • Journal of Life Science
    • /
    • v.26 no.4
    • /
    • pp.460-467
    • /
    • 2016
  • A filamentous cyanobacterium, Limnothrix sp. KNUA012, was axenically isolated from a freshwater bloom sample in Lake Hapcheon, Hapcheon-gun, Gyeongsangnam-do, Korea. Its morphological and molecular characteristics led to identification of the isolate as a member of the genus Limnothrix. Maximal growth was attained when the culture was incubated at 25℃. Analysis of its lipid composition revealed that strain KNUA012 could autotrophically synthesize alkanes, such as pentadecane (C15H32) and heptadecane (C17H36), which can be directly used as fuel without requiring a transesterification step. Two genes involved in alkane biosynthesis-an acyl-acyl carrier protein reductase and an aldehyde decarbonylase-were present in this cyanobacterium. Some common algal biodiesel constituents-myristoleic acid (C14:1), palmitic acid (C16:0), and palmitoleic acid (C16:1)-were produced by strain KNUA012 as its major fatty acids. A proximate analysis showed that the volatile matter content was 86.0% and an ultimate analysis indicated that the higher heating value was 19.8 MJ kg−1. The isolate also autotrophically produced 21.4 mg g−1 phycocyanin-a high-value antioxidant compound. Therefore, Limnothrix sp. KNUA012 appears to show promise for application in cost-effective production of microalga-based biofuels and biomass feedstock over crop plants.

Assessment of Distribution Patterns and Sources for PAHs, OCPs, and Co-PCBs in the Surface Sediments from the Nakdong River Basin, Korea (낙동강 하천 및 호소 퇴적물에서의 PAHs, OCPs, Co-PCBs 농도 분포와 발생원 평가)

  • Kang, Hee-Hyung;Lee, In-Seok;Huh, In-Ae;Shin, Won-Sik;Hwang, In-Sung;Kim, Young-Hoon;Hur, Jin;Shin, Hyun-Sang;Kim, Joon-Ha;Oh, Jeong-Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.7
    • /
    • pp.656-664
    • /
    • 2010
  • We investigated the levels and distribution patterns of 16 priority polycyclic aromatic hydrocarbons (PAHs), 12 Coplanar polychlorinated biphenyls (Co-PCBs) and organochlorine pesticides (OCPs) in the surface sediments from the Nakdong river basin, Korea. The levels of 16 PAHs and 12 Co-PCBs in the river sediment samples ranged from not detected (N.D.)~969.3 ng/g-dry, 4.2~7716.5 pg/g-dry (0.0~10.1 pg-TEQ/g-dry), respectively. Also, the levels of 16 PAHs were from 5.8~2987.2 ng/g-dry and 4.3~461.1 pg/g-dry (0.0~0.6 pg-TEQ/g-dry) for 12 Co-PCBs in the lake sediment samples. Only dichloro-diphenyl-trichloroethane (DDT) were detected among target OCPs and the concentration ranged from N.D.~1.5 ng/g-dry in the river sediment samples. These contamination levels were far below the guideline values suggested for environmental quality assessment. Low molecular weight PAHs were dominant in the river sediment samples, while middle and high molecular weight PAHs were dominant among 16 PAHs in the lake sediment samples. PCB-118 and PCB-105 were predominant congeners in the sediment, which were similar to the results obtained from previous studies. With these results, the assessment of potential sources of PAHs and Co-PCBs contamination in the sediments of the Nakdong river basin was performed. The pyrogenic-PAHs originated from combustion of fossil fuel and biomass were related with the PAHs contribution in most of the sediment samples, and Co-PCBs in the sediment samples were related with commercial PCB products.