• Title/Summary/Keyword: Biomass Fuel

Search Result 364, Processing Time 0.029 seconds

Biorefinery Based on Weeds and Agricultural Residues (잡초 및 농림부산물을 이용한 Biorefinery 기술개발)

  • Hwang, In-Taek;Hwang, Jin-Soo;Lim, Hee-Kyung;Park, No-Joong
    • Korean Journal of Weed Science
    • /
    • v.30 no.4
    • /
    • pp.340-360
    • /
    • 2010
  • The depletion of fossil fuels, ecological problems associated with $CO_2$ emissions climate change, growing world population, and future energy supplies are forcing the development of alternative resources for energy (heat and electricity), transport fuels and chemicals: the replacement of fossil resources with $CO_2$ neutral biomass. Several options exist to cover energy supplies of the future, including solar, wind, and water power; however, chemical carbon source can get from biomass only. When used in combination with environmental friend production and processing technology, the use of biomass can be seen as a sustainable alternative to conventional chemical feedstocks. The biorefinery concept is analogous to today's petroleum refinery, which produce multiple fuels and chemical products from petroleum. A biorefinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, and value-added chemicals from biomass. Biorefinery is the co-production of a spectrum of bio-based products (food, feed, materials, and chemicals) and energy (fuels, power, and heat) from biomass [definition IEA Bioenergy Task 42]. By producing multiple products, a biorefinery takes advantage of the various components in biomass and their intermediates therefore maximizing the value derived from the biomass feedstocks. A biorefinery could, for example, produce one or several low-volume, but high-value, chemical or nutraceutical products and a low-value, but high-volume liquid transportation fuel such as biodiesel or bioethanol. Future biorefinery may play a major role in producing chemicals and materials as a bridge between agriculture and chemistry that are traditionally produced from petroleum. Industrial biotechnology is expected to significantly complement or replace the current petroleum-based industry and to play an important role.

Development of a Movable Pellet Manufacturing Equipment (이동식 펠릿 제조장비 개발에 대한 연구)

  • Jho, Shi Gie;Kum, Sungmin
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.13-19
    • /
    • 2015
  • The wood pellet is standardized of woody type fuel which of small cylindrical shape that is produced compress wood remnants in process of woody processing. The pellet is critical energy which expects to increase of the amount used in future. It consumes fuel which of home, common facilities stove and boiler, district heating, and CHP, etc. This study was to develop a movable pellet manufacturing equipment that can be mounted on a truck. The pellet production volume is approximately 309kg per hour, daily output is about 2ton. One days work based on the expected revenue of approximately \268,000 feasibility is considered sufficient.

Fuel Properties of Woody Pellets in Domestic Markets of Korea

  • Oh, Jae-Heun;Hwang, Jin-Sung;Cha, Du-Song
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.4
    • /
    • pp.362-369
    • /
    • 2014
  • This study investigated physical properties and combustion gas characteristics for 8 types of wood pellets (4 domestic and 4 imported products) distributed in the domestic market. Results showed that most pellet types were first-grade pellets in the wood pellet quality standards in Korea with the exception of 3 pellet types from K company (second-grade in mechanical durability), G company (off-grade in nitrogen content) and P company (second-grade in ash percentage). Mixed pellets which contained more lignin and sap content were higher in mechanical durability (%) than that of white pellets. From the combustion gas analysis results, NOx emitted from all pellets combustion was at acceptable levels for national emission standard of the Clean Air Conservation Act except for pellets from G company. In addition, CO levels from all types of wood pellets were acceptable except for pellets from D company and domestic pellets were higher CO levels than imported pellets. These results indicate the higher CO levels in domestic pellets due to the usage of forest thinning materials including logging debris which usually had the high content of bark.

Degradation Properties and Production of Fuels from Hemicellulose by Acetone-Solvolysis (아세톤 용매분해법에 의한 헤미셀룰로오스의 분해특성 및 연료물질의 생성)

  • Lee, Jong-Jib
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.1
    • /
    • pp.56-63
    • /
    • 2008
  • In this study, thermochemical degradation of hemicellulose by Acetone-Solvolysis, the effects of reaction temperature, conversion yield, degradation properties and degradation products were investigated. Experiments were performed in a tube reactor by varying reaction temperature from $200{\circ}C$ to $400{\circ}C$ at 40 min of reaction time. The liquid products from pyrolysis-liquefaction of hemicellulose contained various kinds of ketones. ketones, as 4-methyl-3-penten-2-one, 3-methylene-2-pentanone, 22,6-dimethyl-2, 5-heptadien-4-one, 4-methyl-2-pentanone, 5-methyl-2-hexanone, 3,5,5-trimethyl-2-cyclohexen-1-one, and bezenes. as 1,4-dimethylbenzene, 1-methyl-2-(1-methylethyl)-benzene, 1,4-dimethyl-2-(2-methylpropyl)benzene, 4-secbutyl-ethyl benzene, could be used as high-octane-value fuels and fuel additives. Combustion heating value of liquid products from thermochemical conversion processes of hemicellulose was in the range of $6,680{\sim}7,170cal/g$. After 40min of reaction at $400{\circ}C$ in Acetone-Solvolysis of hemicellulose, the energy yield and mass yield was as high as 72.2% and 41.2g oil/100g raw material, respectively.

Degradation Properties and Production of Fuels from Cellulose - Solvolysis - (셀룰로오스의 분해특성 및 연료물질 생성[II] - 용해분해 반응 -)

  • Lee, Jong-Jib;Lee, Byung-Hak
    • Journal of Hydrogen and New Energy
    • /
    • v.16 no.2
    • /
    • pp.159-169
    • /
    • 2005
  • Cellulose, consisted of 45 wt% in wood, is usable as fuels and heavy oil additives if depolymerized to monomer unit, because the chemical structures are similar to high octane materials found in gasoline. In this study, thermochemical degradation by solvolysis reaction of cellulose such as the effect of reaction temperature, reaction time and type of solvent on conversion yield and degradation products were investigated. It was found that the effectiveness of the solvent on the sovolysis reaction was as follows; acetone>n-butanol>tetralin. When acetone was used as a solvent, the highest cellulose conversion was observed to be 91.8% at 500$^{\circ}C$, 40min. Combustion heating value of liquid products from thermochemical conversion processes was in the range of 7,330${\sim}$7,410cal/g. The energy yield and mass yield in acetone-solvolysis of cellulose was as high as 66.8% and 37.0 g oil/100g raw material after 40min of reaction at 400$^{\circ}C$. Various aliphatic and aromatic compounds were detected in the cellulose solvolysis products. The major components of the solvolysis products, that could be used as fuel, were mesityl oxide, mesitylene, isophorone.

Degradation Properties and Production of Fuels of Cellulose - Pyrolysis-Liquefaction - (셀룰로오스의 분해특성 및 연료물질 생성 (I) -열분해·액화반응-)

  • Lee, Jong-Jip;Lee, Byeong-Hak
    • Journal of Hydrogen and New Energy
    • /
    • v.15 no.4
    • /
    • pp.333-340
    • /
    • 2004
  • In this study, thermochemical degradation by pyrolysis-liquefaction of cellulose, the effects of reaction time, reaction temperature, conversion yield, degradation properties and degradation products were investigated . Experiments were performed in a tube reactor by varying reaction time from 20 to 80 min at $200{\sim}500^\circ{C}$. Combustion heating value of liquid products from thermochemical conversion processes of cellulose was in the range of 6,920~6,960cal/g. After 40min of reaction at $400^\circ{C}$ in pyrolysis-liquefaction of cellulose, the energy yield and mass yield was as high as 54.3% and 34.0g oil/100g raw material, respectively. The liquid products from pyrolysis-liquefaction of cellulose contained various kinds of ketones, phenols and furans. ketones and furans could be used as high-octane-value fuels and fuel additives. However, phenols are not valuable as fuels.

A Study on the Catalyst for the Synthesis of DME with Hydrogen Energy Density (수소 에너지 밀도가 높은 디메틸에테르(DME) 제조 촉매에 관한 연구)

  • Jang, Eun-Mee;Baek, Young-Soon;Oh, Young-Sam
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.5
    • /
    • pp.445-452
    • /
    • 2008
  • DME(Dimethyl ether) Dimethyl Ether (DME) is a new clean fuel and an environmental-benign energy resource. In comparison with other fuels, DME rapidly decomposes into carbon dioxide ($CO_2$) and water in the atmosphere without forming ozone. It can be manufactured from various energy sources including natural gas, coal, biomass and spent plastics. In addition to its environmentally friendly properties, DME is considered as one of the most promising candidates for the substitute of LPG and diesel fuel. In this work, we will be studied to find optimized condition for the catalyst of DME energy manufacture from hydrogen and carbon oxide and its chemical and physical characteristics.

Removal of tar and particulate from gasification process using pre-coating technology (바이오매스 가스화 공정의 생성가스 중 타르 및 입자 제거를 위한 pre-coating 기술 연구)

  • Kim, Joon-Yub;Choi, Byoung-Kwon;Jo, Young-Min;Kim, Sang-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.804-815
    • /
    • 2019
  • Due to the depletion and environmental problems of fossil fuel, biomass has arisen as an alternative energy source. Biomass is a renewable and carbon-neutral source. However, it is moister and has lower energy density. Therefore, biomass needs thermal chemical conversion processes like gasification, and it does not only produce a flammable gas, called 'syngas', which consists of CO, H2, and CH4, but also some unwanted byproducts such as tars and some particulates. These contaminants are condensed and foul in pipelines, combustion chamber and turbine, causing a deterioration in efficiency. Thus this work attempted to find a method to remove tars and particles from syngas with a filter which adopts a pre-coating technology for preventing blockage of the filter medium. Hydrated limestone powder and activated carbon(wood char) powder were used as the pre-coat materials. The removal efficiency of the tars was 86 % and 80 % with activated carbon(wood char) coating and hydrated limestone coating, respectively.

The Effect of Microalgal Growth on Nutrient Sources Using Microalgal Small Scale Raceway Pond (SSRP) for Biodiesel Production (바이오디젤 생산을 위한 미세조류 옥외배양 시스템의 영양원에 따른 미세조류 성장 특성 비교)

  • Kim, Dong-Ho;Kim, Byung-Hyuk;Choi, Jong-Eun;Kang, Zion;Kim, Hee-Sik
    • Korean Journal of Microbiology
    • /
    • v.50 no.4
    • /
    • pp.313-318
    • /
    • 2014
  • The world is in need of sustainable and eco-friendly energy sources such as microalgal biodiesel due to global warming and fossil fuel shortages. In this study, we compared the effectiveness of liquid fertilizer produced from swine manure and agriculture grade solid fertilizers as nutrient sources for microalgal biomass production. Mixed culture (Chlorella spp., Scenedesmus spp., Stigeoclonium spp.; CSS) was cultivated for 28 days in Small Scale Raceway Pond (SSRP) using various nutrient sources (swine manure liquid fertilizer, agricultural solid fertilizer, and mixture of these two fertilizers). Biomass and lipid productivity of fertilizer mixture were the highest at 0.8 g/L and 5.8 mg/L/day, respectively. These results indicate that the fertilizer mixture can provide microalgae necessary nutrient sources for stable biodiesel production and biomass growth. In addition, overall cost of microalgal cultivation and subsequently biodiesel production would be significantly reduced.

Estimation of Biomass Loss and Greenhouse Gases Emissions from Surface Layer Burned by Forest Fire (산불로 인한 지표층 연소량 및 온실가스 배출량 추정)

  • Lee, Byungdoo;Youn, Ho Jung;Koo, Kyosang;Kim, Kyongha
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.2
    • /
    • pp.286-290
    • /
    • 2012
  • Globally, the forest fires are a significant contributor of carbon dioxide and other greenhouse gases in the atmosphere. In this study, fuel load consumed by forest fire and emission of green house gases were analysed in the surface layer. For this, remaining fuel was collected and weighed with the species (Japanese red pine, deciduous) and the forest fire types (surface fire, crown fire) in the 51 forest fires. 8,361 kg/ha fuel load was consumed in deciduous forest damaged by surface fire, and 8,055 kg/ha, 12,333 kg/ha in Japanese red pine burned by surface fire and crown fire. The combustion ratios were 78, 59, and 90%, respectively. 15,856 kg/ha the green house gases such as $CO_2$, $CH_4$, $CH_4$ in deciduous forest burned by surface fire was emitted and 14,834 kg/ha, 22,709 kg/ha in Japanese red pine burned by surface fire and crown fire.