• Title/Summary/Keyword: Biomagnetism

Search Result 32, Processing Time 0.019 seconds

Application of 40-channel SQUID Gradiometer System for the Comparison of Magnetocardiograms from Healthy Subjects and Patients with WPW syndrome and DCM (40 채널 SQUID 미분계 시스템을 이용한 정상인과 WPW 증후군 및 확장성 심근증 환자의 심자도 비교)

  • 정용석;권혁찬;김기웅;이용호;강찬석;김진목;박용기;김기영;박기락
    • Progress in Superconductivity
    • /
    • v.5 no.1
    • /
    • pp.38-44
    • /
    • 2003
  • The aim of this study is to confirm clinical usefulness of magnetocardiogram (MCG) by analyzing MCG data of health subjects and patients with Wolff-Parkinson-White (WPW) syndrome and dilated cardiomyopathy (DCM). Measurement of MCG signals was done with a home-made 40-channel SQUID system. MCG signals of 30 healthy subjects were measured as the reference of MCG signals. Among the DCM patients, 7 patients showed abnormal the direction of T wave vector. For a WPW syndrome patient, we measured the MCG signals before and after the surgery. and compared the difference. From the measured magnetic field distribution, current vector map was obtained to show the myocardium current activity. By comparing the MCG signals and current maps, we showed the differences in the analysis results between the healthy subjects and patients with heart diseases.

  • PDF

Influence of Sensor Noise on the Localization Error in Multichannel SQUID Gradiometer System (다채널 스퀴드 미분계에서 센서 잡음이 위치추정 오차에 미치는 영향)

  • 김기웅;이용호;권혁찬;김진목;정용석;강찬석;김인선;박용기;이순걸
    • Progress in Superconductivity
    • /
    • v.5 no.2
    • /
    • pp.98-104
    • /
    • 2004
  • We analyzed a noise-sensitivity profile of a specific SQUID sensor system for the localization of brain activity. The location of a neuromagnetic current source is estimated from the recording of spatially distributed SQUID sensors. According to the specific arrangement of the sensors, each site in the source space has different sensitivity, that is, the difference in the lead field vectors. Conversely, channel noises on each sensor will give a different amount of the estimation error to each of the source sites. e.g., a distant source site from the sensor system has a small lead-field vector in magnitude and low sensitivity. However, when we solve the inverse problem from the recorded sensor data, we use the inverse of the lead-field vector that is rather large, which results in an overestimated noise power on the site. Especially, the spatial sensitivity profile of a gradiometer system measuring tangential fields is much more complex than a radial magnetometer system. This is one of the causes to make the solutions of inverse problems unstable on intervening of the sensor noise. In this study, in order to improve the localization accuracy, we calculated the noise-sensitivity profile of our 40-channel planar SQUID gradiometer system, and applied it as a normalization weight factor to the source localization using synthetic aperture magnetometry.

  • PDF

Role of Magnetocardiography in Emergency Room (응급실에서 심자도의 역할)

  • Kwon, H.;Kim, K.;Kim, J.M.;Lee, Y.H.;Kim, T.E.;Lim, H.K.;Park, Y.K.;Ko, Y.G.;Chung, N.
    • Progress in Superconductivity
    • /
    • v.8 no.1
    • /
    • pp.40-45
    • /
    • 2006
  • In emergency rooms, patients with acute chest pain should be diagnosed as quickly as possible with higher diagnostic accuracy for an appropriate therapy to the patients with acute coronary syndrome or for avoiding unnecessary hospital admissions. At present, electrocardiography(ECG) and biochemical markers are generally used to detect myocardial infarction and coronary angiography is used as a gold standard to reveal the degree of narrowing of coronary artery. Magnetocardiography(MCG) has been proposed as a novel and non-invasive diagnostic tool fur the detection of cardiac electrical abnormality associated with myocardial ischemia. In this study, we examined whether the MCG can be used fur the detection of coronary artery disease(CAD) in patients, who were admitted to the emergency room with acute chest pain. MCG was recorded from 36 patients admitted to the emergency room with suspected acute coronary syndrome. The MCG recordings were obtained using a 64-channel SQUID MCG system in a magnetically shielded room. In result, presence of CAD could be found with a sensitivity of 88.2 % in patients with acute chest pain without 57 elevation in ECG, demonstrating a possible use in the emergency room to screen CAD patients.

  • PDF

Diagnosis of Coronary Artery Disease in Patients with Chest Pain by Means of Magnetocardiography (흉통환자에서 심자도를 이용한 관상동맥질환의 진단)

  • Kwon, H.;Kim, K.;Kim, J.M.;Lee, Y.H.;Kim, T.E.;Lim, H.K.;Park, Y.K.;Ko, Y.G.;Chung, N.
    • Progress in Superconductivity
    • /
    • v.8 no.1
    • /
    • pp.46-53
    • /
    • 2006
  • Magnetocardiography(MCG) has been proposed as a novel and non-invasive diagnostic tool for the detection of cardiac electrical abnormality associated with myocardial ischemia. In our previous study, we have proposed a new classification method of MCG parameters, based on the different populations of the parameters between coronary artery disease(CAD) patients, symptomatic patients and healthy volunteers. We used four parameters, representing the directional changes of the electrical activity in the period of an R-ST-T interval. In patients with chest pain and without ST-segment elevation, who were selected consecutively from all patients admitted to the hospital in 2004, the patients with CAD could be classified with a higher sensitivity than conventional methods, showing that the proposed method can be useful for the diagnosis of CAD with MCG. In this study, we examined the validity of the algorithm with the prior probability distribution in diagnosis of new patients admitted to the hospital in 2005. In the results, presence of CAD could be found with sensitivity and specificity of 81.3% and 71.4%, respectively, in patients with chest pain and non-diagnostic ECG findings.

  • PDF

Wide-bandwidth SQUID Current Amplifier and Control Electronics for X-ray Microcalorimeter (X-선 미소열량계 신호 검출을 위한 광대역 SQUID 전류증폭기와 조절 회로)

  • 김진목;이용호;권혁찬;김기웅;박용기
    • Progress in Superconductivity
    • /
    • v.5 no.1
    • /
    • pp.31-37
    • /
    • 2003
  • Wide-bandwidth SQUID current amplifier and its control electronics have been constructed for detecting pulse outputs of a superconducting microcalorimeter. The current amplifier made of a double relaxation oscillation SQUID (DROS) has a bandwidth of 1.2 MHz and typical white noise level of about 6 pA/(equation omitted) Hz. To increase the dynamic range of the current amplifier, the flux-locked loop (FLL) has additional circuits to reset the integrator and to count reset numbers which present the number of passed flux quanta. In this system, dynamic range covers from -65 mA to +65 mA. SQUID electronics are controlled by software to get the optimum FLL condition, and to control the current to bias the transition edge sensor (TES). The electronics are shielded from the outside electromagnetic noises by using an aluminum case of 66 mm ${\times}$ 25 mm ${\times}$ 100 mm, and consist of 2 separate printed-circuit-boards for the current amplifier and the control electronics, respectively. The SQUID current amplifier and its control electronics will be used in TESs for detecting photons such as UV and X-ray with high energy resolution.

  • PDF