• Title/Summary/Keyword: Biological width

Search Result 259, Processing Time 0.028 seconds

ELECTRON TEMPERATURE ESTIMATION OF NON-THERMAL ATMOSPHERIC-PRESSURE NEON AND OXYGEN ADMIXTURE PLASMA JET BY CONVECTIVE WAVE PACKET MODEL

  • SORNSAKDANUPHAP, Jirapong;SUANPOOT, Pradoong;Hong, Young June;Ghimire, Bhagirath;CHO, Guangsup;CHOI, EunHa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.207-207
    • /
    • 2016
  • plasma group velocities of neon with oxygen admixture (ug) are obtained by intensified charge coupled device (ICCD) camera images at fixed gate width time of 5 ns. The propagation velocities outside interelectrode region are in the order of 104 m/s.The plasma ambipolar diffusion velocities are calculated to be in the order of 102 m/s. Plasma jet is generated by all fixed sinusoidal power supply, total gas flow and repetition frequency at 3 kV, 800 sccm and 40 kHz, respectively. The amount of oxygen admixture is varied from 0 to 2.75 %. By employing one dimensional convective wave packet model, the electron temperatures in non-thermal atmospheric-pressure plasma jet are estimated to be in a range from 1.65 to 1.95 eV.

  • PDF

ELECTRON TEMPERATURE ESTIMATION OF NON-THERMAL ATMOSPHERIC-PRESSURE NEON AND ARGON PLASMA JET BY CONVECTIVE WAVE PACKET MODEL

  • SORNSAKDANUPHAP, Jirapong;SUANPOOT, Pradoong;Hong, Young June;Ghimire, Bhagirath;CHO, Guangsup;CHOI, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.156.1-156.1
    • /
    • 2015
  • Neon and argon plasma group velocities (ug) are obtained by intensified charge coupled device (ICCD) camera images at fixed gate width time of 5 ns. The propagation velocities in upstream and downstream region are in the order of 104-105 m/s. The plasma ambipolar diffusion velocities are calculated to be in the order of 101-102 m/s. Plasma jet is generated by sinusoidal power supply in varying voltages from 1 to 4 kV at repetition frequency of 40 kHz. By employing one dimensional convective wave packet model, the neon and argon electron temperatures in non-thermal atmospheric-pressure plasma jet are estimated to be 1.95 and 1.18 eV, respectively.

  • PDF

Stress Responses of Eurasian Otter (Lutra lutra) in Relation to Habitats and Season (계절과 서식지 유형에 따른 국내 Eurasian otter (Lutra lutra)의 스트레스 반응)

  • Lee, Gun Joo;Cho, Hyun Jin;Na, Jeong Eun;Jang, Jae Min;Jang, Jin Woo;Lee, Hak Young
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.1
    • /
    • pp.80-90
    • /
    • 2020
  • In order to understand the stress responses, we measured the concentration of stress hormones by using the fresh feces of wild otters in the Gwangju stream and Seomjin river during summer and winter in 2018. We compared seasonal and regional number of spraints (=otters' feces), temperature, altitude, water width, land cover, and water quality with stress hormones. The stress hormone levels were higher in summer than in winter, and significantly different to season and region. In addition, the number of feces were different according to the season and region, and showed a negative correlation with stress hormone. This study suggested assessing stress hormones as another promising method for the analysis of status of wild otters and it will contribute to establish the management and conservation policy, especially in urban area.

A Study on the Environmental Factors Affecting the Population of the Wintering Waterbirds in Wonju-Stream (원주천의 월동수조류 군집에 영향을 미치는 환경요인 연구)

  • Park, Yung Wook;Lee, Hwang Goo;Won, Kyung Ho;Choi, Jun Kil
    • Journal of Wetlands Research
    • /
    • v.19 no.4
    • /
    • pp.409-422
    • /
    • 2017
  • In order to understand the environmental factors affecting the waterbird community in winter, we divided the watershed into 6 sections and investigated the size of the stream, the water quality, benthic invertebrates, and fish including birds. The influences on the community of water birds in Wonju stream were river structure, temperature and water quality. Among the structure of the river, the factors affecting the waterbird community in winter were the width of the stream and the width of the flowing water. The wider the width, the more species and the number of the winter waterbirds were. As the width of river water was wide, the smaller the width and width of the waterway, the fewer the population. The temperature changes of the wintering season affected the community of water birds because it led to freezing of rivers. The sections that were not frozen showed a significant increase and decrease in the temperature drop and rise. The values of pH, water temperature, COD, BOD, TN, TP and total E. coli increased with the increase of the downstream waterbirds population in the water quality survey. The water quality of S6 was affected by the downstream sewage treatment plant The number of wintering waterbirds was also highest. The effluent from the sewage treatment plant seems to have a considerable influence on the water quality. The increase of several items such as TN promotes the nutrition of the river, which leads to the accumulation of organic matter and the proliferation of aquatic organisms. This may be the cause of the increase in winter waterbirds as a food source. The benthic macroinvertebrate communities and fish communities did not show any correlation with the wintering water-birds communities.

Two Oxytrichid Ciliates, Cyrtohymena primicirrata and Oxytricha granulifera (Ciliophora: Sporadotrichida: Oxytrichidae) Unknown from Korea

  • Kwon, Choon Bong;Shin, Mann Kyoon
    • Animal Systematics, Evolution and Diversity
    • /
    • v.29 no.1
    • /
    • pp.23-30
    • /
    • 2013
  • This study reports the discovery of two oxytrichid ciliates, Cyrtohymena primicirrata (Berger and Foissner, 1987) and Oxytricha granulifera Foissner and Adam, 1983, in Jeju Island, Korea. The morphology of the two species was studied using live observation and protargol impregnation. These species are described as follows: Cyrtohymena primicirrata has a body size in live specimens $90-140{\times}40-60{\mu}m$, length : width ratio 2.3 : 1 on average; elongated and slender obovate in outline of body. Cortical granules are shiny yellow on the ventral and dorsal side. Adoral zone of membranelles (AZM) is covering about 48% of the cell with about 38 adoral membranelles. Arrangement of undulating membranes is ordinary Cyrtohymena pattern. Dorsal kineties is six rows with $5{\mu}m$ long bristles. Oxytricha granulifera has a body size in live specimens $90-115{\times}25-38{\mu}m$, length : width ratio 3.31 on average; elongated ellipsoidal in outline of body. Cortical granules are colorless on the ventral and dorsal side. AZM is covering 28% of the cell length in vivo with about 24 adoral membranelles. Arrangement of undulating membranes is Oxytricha pattern. Dorsal kineties is five rows with about $3{\mu}m$ long dorsal bristles.

Fabrication and Simulation of Fluid Wing Structure for Microfluidic Blood Plasma Separation

  • Choe, Jeongun;Park, Jiyun;Lee, Jihye;Yeo, Jong-Souk
    • Applied Science and Convergence Technology
    • /
    • v.24 no.5
    • /
    • pp.196-202
    • /
    • 2015
  • Human blood consists of 55% of plasma and 45% of blood cells such as white blood cell (WBC) and red blood cell (RBC). In plasma, there are many kinds of promising biomarkers, which can be used for the diagnosis of various diseases and biological analysis. For diagnostic tools such as a lab-on-a-chip (LOC), blood plasma separation is a fundamental step for accomplishing a high performance in the detection of a disease. Highly efficient separators can increase the sensitivity and selectivity of biosensors and reduce diagnostic time. In order to achieve a higher yield in blood plasma separation, we propose a novel fluid wing structure that is optimized by COMSOL simulations by varying the fluidic channel width and the angle of the bifurcation. The fluid wing structure is inspired by the inertial particle separator system in helicopters where sand particles are prevented from following the air flow to an engine. The structure is ameliorated in order to satisfy biological and fluidic requirements at the micro scale to achieve high plasma yield and separation efficiency. In this study, we fabricated the fluid wing structure for the efficient microfluidic blood plasma separation. The high plasma yield of 67% is achieved with a channel width of $20{\mu}m$ in the fabricated fluidic chip and the result was not affected by the angle of the bifurcation.

Bending Motion Control of Electroactive Polymer Actuator-Sensor Hybrid Structure for Finger Exoskeleton (손가락 외골격용 전기활성 고분자 구동체-센서 하이브리드 구조체의 굽힘 동작 제어)

  • Han, Dong Gyun;Song, Dae Seok;Jho, Jae Young;Kim, Dong Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.10
    • /
    • pp.865-871
    • /
    • 2015
  • This study was conducted in order to develop a finger exoskeleton system using ionic polymer metal composites (IPMCs) as the actuator and sensor in a hybrid structure. To use the IPMC as an actuator producing large force, a first order transfer function was obtained using results from a block force for DC excitation that applied to two IPMCs of 20mm-width, 50mm-length, and 2.4mm thickness together. After which the validation of 200gf control with anti-windup PI controller was confirmed. A 5mm-width, 50mm-length, 0.6mm-thickness of IPMC was also modeled as a sensor for tip displacement. As a result, the IPMC sensor could been utilized as a trigger role for the actuator. Finally, an IPMC sensor and actuator were installed on the joint of a single DOF exoskeleton in the hybrid structure, and test for the control of 40gf of block force and predefined sequence of motion was performed.

Physical characteristics and age structure of Mongolian racerunner (Eremias argus; Larcertidae; Reptilia)

  • Kim, Ja-Kyoung;Song, Jae-Young;Lee, Jung-Hyun;Park, Dae-Sik
    • Journal of Ecology and Environment
    • /
    • v.33 no.4
    • /
    • pp.325-331
    • /
    • 2010
  • In this study, we have evaluated the physical characteristics of neonate, female, and male Mongolian racerunners (Eremias argus) and determined the age structure of a population of the species in a field located in Taean-gun, Chungnam, South Korea. The physical parameters of females and males, including snout-vent length (SVL), head length, head width, and body mass were found to be significantly interrelated. Male Mongolian racerunners exhibited significantly longer heads than the females, but other physical parameters, such as SVL, head width, and body mass did not differ between the female and male specimens. In the study population, the females ranged in age from two to eleven years old and the males ranged between two to eight years of age. The number of females and males, when separated into different age classes, did not differ within each age class. Male Mongolian racerunners evidenced greater SVL growth coefficients than the females, but asymptotic SVL did not differ between the females and males.

Bran Structure and Water Uptake Rate of Japonica and Tongil-type Brown Rices (일반계와 통일계 현미의 겨층구조와 수분 흡수 속도)

  • Lee, Soo-Jeung;Kim, Sung-Kon
    • Applied Biological Chemistry
    • /
    • v.37 no.2
    • /
    • pp.94-99
    • /
    • 1994
  • Bran structure and water uptake rate for brown rices of thirteen japonica and twelve Tongil cultivars were investigated. The japonica type was shorter in length and had lower value in the ratio of length to width than Tongil one. No differences were observed in width and weight between the two types. The number of aleurone layer and the thickness of bran layer were higher in dorsal side than in ventral side in all rice cultivars. The structure in ventral side was similar but the number of aleurone layer in dosal side was higher in japonica samples. There were no significant differences in water uptake rates showed no correlation with the bran structure.

  • PDF

The Effect of Food Waste Compost and Livestock Manure on Chinese Cabbage (Brassica rapa var. glabra) Growth

  • Lee, Young Don;Yoo, Jae Hong;Joo, Jin Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.547-553
    • /
    • 2017
  • Treatment of food waste is becoming a big issue due to their significant quantities. Composting could be an effective alternative for food waste management which could be used as soil conditioner or fertilizer with little concerns about heavy metals and pathogens. The purpose of this research was to evaluate the effect of food waste on Chinese cabbage growth and soil properties. 9 different treatments (two livestock manures, two food wastes, two livestock manures + chemical fertilizer, two food wastes + chemical fertilizer, and control) were applied to Chinese cabbage. All treatments were carried out in 3 replicates. We measured leaf length, leaf width, fresh weight, dry weight, and leaf greenness of Chinese cabbage. Treatment of one of food waste composts significantly increased leaf length and leaf width of Chinese cabbage by 28.6, 26.6, 67.7, and 59.9%, respectively, in comparison to those of control, while no significant differences for leaf greenness were shown. Application of food waste compost resulted in significant increase of EC, available $P_2O_5$, CEC, organic matter, and exchangeable cations. However, further researches are needed to reduce NaCl content of food waste.