• Title/Summary/Keyword: Biological spectrum

Search Result 470, Processing Time 0.024 seconds

Surface Characteristics of Type II Anodized Ti-6Al-4V Alloy for Biomedical Applications

  • Lee, Su-Won;Jeong, Tae-Gon;Yang, Jae-Ung;Jeong, Jae-Yeong;Park, Gwang-Min;Jeong, Yong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.77-77
    • /
    • 2017
  • Titanium and its alloys offer attractive properties in a variety of applications. These are widely used for the field of biomedical implants because of its good biocompatibility and high corrosion resistance. Titanium anodizing is often used in the metal finishing of products, especially those can be used in the medical devices with dense oxide surface. Based on SAE/AMS (Society of Automotive Engineers/Aerospace Material Specification) 2488D, it has the specification for industrial titanium anodizing that have three different types of titanium anodization as following: Type I is used as a coating for elevated temperature forming; Type II is used as an anti-galling coating without additional lubrication or as a pre-treatment for improving adherence of film lubricants; Type III is used as a treatment to produce a spectrum of surface colours on titanium. In this study, we have focused on Type II anodization for the medical (dental and orthopedic) application, the anodized surface was modified with gray color under alkaline electrolyte. The surface characteristics were analyzed with Focused Ion Beam (FIB), Scanning Electron Microscopy (SEM), surface roughness, Vickers hardness, three point bending test, biocompatibility, and corrosion (potentiodynamic) test. The Ti-6Al-4V alloy was used for specimen, the anodizing procedure was conducted in alkaline solution (NaOH based, pH>13). Applied voltage was range between 20 V to 40 V until the ampere to be zero. As results, the surface characteristics of anodic oxide layer were analyzed with SEM, the dissecting layer was fabricated with FIB method prior to analyze surface. The surface roughness was measured by arithmetic mean deviation of the roughness profile (Ra). The Vickers hardness was obtained with Vickers hardness tester, indentation was repeated for 5 times on each sample, and the three point bending property was verified by yield load values. In order to determine the corrosion resistance for the corrosion rate, the potentiodynamic test was performed for each specimen. The biological safety assessment was analyzed by cytotoxic and pyrogen test. Through FIB feature of anodic surfaces, the thickness of oxide layer was 1.1 um. The surface roughness, Vickers hardness, bending yield, and corrosion resistance of the anodized specimen were shown higher value than those of non-treated specimen. Also we could verify that there was no significant issues from cytotoxicity and pyrogen test.

  • PDF

Identification and FT-IR Spectrum Analysis of Lichens on Flagpole Support in Beopjusa Temple (법주사 당간지주 지의류의 동정 및 FT-IR 스펙트럼 특성 분석)

  • Kim, Young Hee;Lee, Jeung Min;Choie, Myoungju;Hong, Jin Young;Jo, Chang Wook;Kim, Soo Ji;Jeong, So Young
    • Journal of Conservation Science
    • /
    • v.33 no.5
    • /
    • pp.391-398
    • /
    • 2017
  • This study was conducted to investigate lichen as a typical biomass damage on the surfaces of flagpole-supporting stones in the Beopjusa temple. The lichens present on the flagpole-supporting stones were limited to five species. Two dominant lichen species were identified: Aspicilia sp. and Pertusaria flavicans. One foliose species and one fruticose species, which are rarely observed on crustose lichens, were identified as Xanthoparmelia conspersa and Ramalina sekika, respectively. The lichen inhabiting the black algae layer was confirmed as Leprocaulon textum. ATR-FTIR was performed to analyze the secondary metabolites synthesized by the lichens. By comparing the FTIR spectra of Xanthoparmelia conspersa and Ramalina sekika, the synthesized organic acids were confirmed to differ from each other. Furthermore, the spectral changes and characteristics due to functional groups in the molecules were confirmed.

Growth Inhibitory Effect of Extracts of Propolis on Epithelial Ovarian Cancer Cells (상피성 난소암 세포에서 프로폴리스 추출물의 세포 증식 저해 효과)

  • Yang, Ga Ram;Yoon, Kyung Mi;Oh, Hyun Ho;Kim, Min Sung;Hwang, Tae Ho;An, Won Gun
    • Journal of Life Science
    • /
    • v.27 no.7
    • /
    • pp.834-839
    • /
    • 2017
  • Propolis is a natural product collected from plants by honey bees product used extensively in traditional medicine for its antioxidant, anti-inflammatory, immunomodulatory and anti-cancer effects. Propolis exhibits a broad spectrum of biological activities because it is a complex mixture of natural substances. Ovarian cancer is the second most common newly diagnosed cancer from all cancers among women in Korea and the leading cause of death from gynecological malignancies. While most ovarian cancer patients initially respond to surgical debulking and chemotherapy, patients later succumb to the disease. Thus, there is an urgent need to test novel therapeutic agents to counteract the high mortality rate associated with ovarian cancer. In this study, we investigated the anti-cancer properties and the active mechanism of Australian propolis in human epithelial ovarian cancer A2780 cells. Our data revealed that propolis showed a cytotoxic activity in a dose-dependent manner. Flow cytometric analysis for cell cycle arrest and apoptosis using propidium iodide staning and annexin V-FITC indicated that propolis could induce cycle arrest in the G0/G1 phase and apoptosis in a dose-dependent manner on human epithelial ovarian cancer cells. These results suggest that the Australian propolis is potential alternative agent on ovarian cancer prevention and treatment.

Screening the extracts of the seeds of Achillea millefolium, Angelica sylvestris and Phleum pratense for antibacterial, antioxidant activities and general toxicity

  • Sarker, Satyajit Dey;Eynon, Elaine;Fok, Katharine;Kumarasamy, Yashodharan;Murphy, Eavan Marie;Nahar, Lutfun;Shaeen, Ehab Mohammed;Shaw, Nichola Mary;Siakalima, Munachonga
    • Advances in Traditional Medicine
    • /
    • v.3 no.3
    • /
    • pp.157-162
    • /
    • 2003
  • Various extracts of higher plants have been used in traditional medicine systems for centuries. While tropical and sub-tropical plants have received considerable attention from the researchers for evaluation of their bioactivity, temeperate plants have always been neglected somewhat. Similarly, seeds of the plants have not been considered seriously compared to other plant parts, e.g. leaves, stems, roots, flowers, etc. as a potential source for biologically active compounds. As part of our on-going evaluation of the extracts of the seeds of temperate plants, especially from Scotland, for biological activity, Achillea millefolium, Angelica sylvestris and Phleum pratense have been chosen for the present study. Both A. millefolium and A. sylvestris are well known for their traditional medicinal uses in Europe and also in the orient, but there is no report on any medicinal properties of P. pratense available to date. Extracts of the seeds of these plants have been assessed for their antioxidant and antibacterial potential and also for general toxicity. Both DCM and MeOH extracts of A. millefolium showed the most significant broad spectrum antibacterial activity among the three plants and inhibited the growth of almost all test strains of bacteria. The DCM extracts of all three species were active against methicillin resistant Staphylococcus aureus (MRSA) and Citrobacter freundii $(MIC=6.25{\times}10^{-1}\;mg/mL)$. While the MeOH extracts of A. millefolium and P. pratense were active against C. freundii, that of P. pratense was also active against MRSA. The MeOH extract of A. sylvestris did not show any antibacterial activity against any of the eight bacterial strains at test concentrations. The MeOH extract of P. pratense showed the most prominent antioxidant activity $(IC_{50}=145\;{\mu}g/ml)$ and there was no antioxidant activity observed with the DCM extract of A. millefolium. The DCM extract of P. pratense was the most toxic $(LC_{50}=20\;{\mu}g/ml)$ among the extracts.

Antifungal Activity of Phenanthrene Derivatives from Aerial Bulbils of Dioscorea batatas Decne (재배마 (Dioscorea batatas Decne)의 주아로부터 분리된 phenanthrene 유도체의 항진균 활성)

  • Kum, Eun-Joo;Park, Sang-Jo;Lee, Bong-Ho;Kim, Jong-Sik;Son, Kun-Ho;Sohn, Ho-Yong
    • Journal of Life Science
    • /
    • v.16 no.4
    • /
    • pp.647-652
    • /
    • 2006
  • Plants of the genus Dioscorea have long been used as oriental folk medicine, and Dioscorea batatas Decne has been cultivated for healthy food in Korea. Although the bulbils were produced 2,000 ton annually, there are few reports for bioactive compounds in bulbils. In this study, three phenanthrenes and two phenanthraquinones were isolated from the aerial bulbils of D. batatas Decne, and their structures were elucidated. Among them, compound 2 (6-hydroxy-2,7-dimethoxy-1,4-phenanthraquinone) has not been reported previously. Evaluation of antimicrobial activities based on disk-diffusion assay, MIC and MFC showed the compound 12 (6,7-dihydroxy-2,4-dimethoxyphenanthrene) has strong antimicrobial activity with $25\;{\mu}g/ml$ of MIC and MFC against Candida albicans. Our results suggested that compound 12 has a potent antifungal activity, and the antimicrobial activity and its spectrum are modulated by hydroxylation and methoxylation of phenanthrene ring moiety of the compound.

A Study on the Energy and Time Characteristics of $BaF_2$ Scintillation Detector ($BaF_2$ 검출기의 시간과 에너지 특성연구)

  • Ju, Gwan-Sik;Park, Il-Jin;Kim, Jong-Ho;Nam, Gi-Yong;Baek, Seung-Hwa
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.267-272
    • /
    • 1997
  • he scintillation detector having $BaF^2$ crystal with 3.6cm dia${\times}$2.0 cm thick was provided. The energy and timing characteristics were measured and compared with NaI(Tl) scintillation detectors, which widely used in unclear medicine. In order to measure the energy spectrum, the radioactive sources used were $^{22}Na,\;^{54}Mn,\;^{57}Co,\;^{137}Cs$ and the source to detector distance was 7cm. For the timing characteristic, NaI(Tl)(1" ${\times}$ 1")-$BaF^2$ and NaI(Tl)(3" ${\times}$ 3")-$BaF^2$ timing coincidence systems were prepared and the used source was $^{22}Na$ emitting 511keV annihilation photons. For the 511keV gamma-ray emitted from $^{22}Na$, It was revealed that the timing response of the $BaF^2$ detector was faster than NaI(Tl)(1" ${\times}$ 1") and NaI(Tl)(3" ${\times}$ 3") detector used in this experimental investigation. The energy characteristics of the $BaF^2$ detector had a good values for about 500keV energy range.

  • PDF

Biological Evaluation of Nargenicin and Its Derivatives as Antimicrobial Anti-inflammatory Agents (토양 균주 발효 추출물 Nargenicin 및 그 유도체의 항생제 대체 효과능 평가)

  • Cho, Seung-Sik;Hong, Joon-Hee;Chae, Jung-Il;Shim, Jung-Hyun;Na, Chong-Sam;Yoo, Jin-Cheol
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.3
    • /
    • pp.469-481
    • /
    • 2014
  • IIn vitro antimicrobial and anti-inflammatory activities of nargenicin and its derivatives were investigated. Nargenicin, an unusual macrolide antibiotic with potent anti-MRSA (methicilin-resistant Staphylococcus aureus) activity, was purified from the culture broth of Nocardia sp. CS682. And variety of novel nargenicin derivatives was synthesized from nargenicin. Two compounds (4 and 5) exhibit a broad spectrum of antimicrobial activities against infectious bacteria. The antimicrobial activity of derivatives against fifteen organisms was assessed using the minimum inhibitory concentration (MIC). The MIC values were in the ranges of $0.15{\sim}80{\mu}g/mL$ (w/v) for compound 1 and 2, $5{\sim}80{\mu}g/mL$ (w/v) for compound 3, $1.25{\sim}40{\mu}g/mL$ (w/v) for compound 4, and $1.25{\sim}80{\mu}g/mL$ (w/v) for compound 5, depending on the pathogens studied. In vitro, we investigated cytotoxicity and inhibition of nitric oxide (NO) production of synthesized compounds 1-5 in Raw 264.7 cells. LPS-induced nitric oxide releases were significantly blocked by compound 3, 4 and 5 in a dose-dependent manner. At high concentrations ($5{\mu}g/mL$) compound 5 inhibited the NO production by 95%. Compound 4 inhibited the release of NO in LPS-activated Raw 264.7 cells by 75% at the concentration of $10{\mu}g/mL$. Compound 3 inhibited the release of NO in LPS-activated Raw 264.7 cells by 65% at the concentration of $100{\mu}g/mL$. On the other hand, nargenicin, compound 1 and 2 did not inhibit NO production. These results demonstrated that compound 4 and 5 displayed antimicrobial activity and blocked LPS-induced pro-inflammatory mediators such as NO in macrophages, which might be responsible for its therapeutic application.

Sodium butyrate reduces high-fat diet-induced non-alcoholic steatohepatitis through upregulation of hepatic GLP-1R expression

  • Zhou, Da;Chen, Yuan-Wen;Zhao, Ze-Hua;Yang, Rui-Xu;Xin, Feng-Zhi;Liu, Xiao-Lin;Pan, Qin;Zhou, Huiping;Fan, Jian-Gao
    • Experimental and Molecular Medicine
    • /
    • v.50 no.12
    • /
    • pp.2.1-2.12
    • /
    • 2018
  • Glucagon-like peptide-1 (GLP-1) has a broad spectrum of biological activity by regulating metabolic processes via both the direct activation of the class B family of G protein-coupled receptors and indirect nonreceptor-mediated pathways. GLP-1 receptor (GLP-1R) agonists have significant therapeutic effects on non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) in animal models. However, clinical studies indicated that GLP-1 treatment had little effect on hepatic steatosis in some NAFLD patients, suggesting that GLP-1 resistance may occur in these patients. It is well-known that the gut metabolite sodium butyrate (NaB) could promote GLP-1 secretion from intestinal L cells. However, it is unclear whether NaB improves hepatic GLP-1 responsiveness in NAFLD. In the current study, we showed that the serum GLP-1 levels of NAFLD patients were similar to those of normal controls, but hepatic GLP-1R expression was significantly downregulated in NAFLD patients. Similarly, in the NAFLD mouse model, mice fed with a high-fat diet showed reduced hepatic GLP-1R expression, which was reversed by NaB treatment and accompanied by markedly alleviated liver steatosis. In addition, NaB treatment also upregulated the hepatic p-AMPK/p-ACC and insulin receptor/insulin receptor substrate-1 expression levels. Furthermore, NaB-enhanced GLP-1R expression in HepG2 cells by inhibiting histone deacetylase-2 independent of GPR43/GPR109a. These results indicate that NaB is able to prevent the progression of NAFL to NASH via promoting hepatic GLP-1R expression. NaB is a GLP-1 sensitizer and represents a potential therapeutic adjuvant to prevent NAFL progression to NASH.

Analysis of Radiation Dose Enhancement for Spread Out Bragg-peak of Proton (확산된 피크의 양성자에서 선량 증강 현상에 대한 분석)

  • Hwang, Chulhwan;Kim, JungHoon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.2
    • /
    • pp.253-260
    • /
    • 2019
  • Radiation dose enhancement is a method of increasing the cross section of interaction, thus increasing the deposited dose. This can contribute to linear energy transfer, LET and relative biological effectiveness, RBE. Previous studies on dose enhancement have been mainly focused on X, ${\gamma}-rays$, but in this study, the dose enhancement was analyzed for proton using Monte Carlo simulation using MCNP6. Based on the mathematical modeling method, energy spectrum and relative intensity of spread out Bragg-peak were calculated, and evaluated dose enhancement factor and dose distribution of dose enhancement material, such as aurum and gadolinium. Dose enhancement factor of 1.085-1.120 folds in aurum, 1.047-1.091 folds in gadolinium was shown. In addition, it showed a decrease of 95% modulation range and practical range. This may lead to an uncertain dose in the tumor tissue as well as dose enhancement. Therefore, it is necessary to make appropriate corrections for spread out Bragg-peak and practical range from mass stopping power. It is expected that Monte Carlo simulation for dose enhancement will be used as basic data for in-vivo and in-vitro experiments.

Isolation and characterization of bacteriophages for the control of Shiga Toxin-producing E. coli (시가 독소 생성 대장균의 제어를 위한 박테리오파지의 분리와 특성 분석)

  • Lim, Ga-Yeon;Park, Do Won;Lee, Young-Duck;Park, Jong-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.6
    • /
    • pp.594-600
    • /
    • 2018
  • Shiga toxin-producing Escherichia coli (STEC) is an important pathogenic bacterium. To control STEC, the characteristics of the ECP33 and NOECP91 coliphages, which belong to the Myoviridae family, were analyzed. The host inhibition range for a total of 44 STEC strains was 45.5% for ECP33 and 65.9% for NOECP91. ECP33 and NOECP91 were relatively stable at $65^{\circ}C$, 50 ppm of sodium hyperchlorite, and a pH value of 4-10. However, the two phages were susceptible to a temperature of $70^{\circ}C$. NOECP91 was killed within 1 h after exposure to 30% ethanol, but ECP33 showed high tolerance even after exposure to 70% ethanol for 1 h. Interestingly, the inhibition of STEC growth according to the multiplicity of infection of 0.1 was confirmed until no growth was observed after 10 hours of culture with the phages. Therefore, the ECP33 and NOECP91 phages may be applied as a biological control agent for Shiga toxin-producing E. coli.