• Title/Summary/Keyword: Biological signal

Search Result 1,267, Processing Time 0.027 seconds

Measurement of Nonlinear Propagation Characteristics of Vibration in the Tissue Using Bispectral Analysis (바이스펙트럼 해석을 이용한 생체조직 내에서의 진동의 비선형 전파특성 계측)

  • ;lgo
    • Journal of Biomedical Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.31-40
    • /
    • 1993
  • It is well known that nonlinear propagation characteristics of the wave in the tissue may give very useful information for the medical diagnoisis. In this paper, a new method to detect nonlinear propa gation characteristics of the internal vibration in the tissue for the low frequency mechanical vibra lion by using bispectral analysis is proposed. In the method, low frequency vibration of $f_0(=100Hz)$ is applied on the surface of the object, and the waveform of the internal vibration ${\times}{\;}(t)$ is measured from Doppler frequency modulation of silmultaneously transmitted probing ultrasonic waves. Then, the bispectra of the signal ${\times}{\;}(t.)$ at the frequencies ($f_0,{\;}f_0$) and ($f_0,{\;}2f_0$) are calculated to estimate the nonlinear propagation characteristics as their magnitude ratio, where since bispectrum is free from the gallssian additive noise we can get the value with high S/N. Basic experimental system is con structed by using 3.0 MHz probing ultrasonic waves and the several experiments are carried out for some phantoms. Results show the superiority of the proposed method to the conventional method using power spectrum and also its usefulness for the tissue characterization.

  • PDF

Development Brief of A Body Area Network for Ubiquitous Healthcare : An Introduction to Ubiquitous Biomedical Systems Development Center

  • Hong Joo-Hyun;Kim Nam-Jin;Cha Eun-Jong;Lee Tae-Soo
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.5
    • /
    • pp.331-335
    • /
    • 2005
  • The fusion technology of small sensor and wireless communication was followed by various application examples of the embedded system, where the social infrastructural facilities and ecological environment were wirelessly monitored. In addition, this technology represents the primary application area being extended into the healthcare field. In this study, a body area network for ubiquitous healthcare is presented. More specifically this represents a wireless biomedical signal acquisition device characterized by small size, low power consumption, pre-processing and archiving capability. Using this device, a new method for monitoring vital signs and activity is created. A PDA-based wireless sensor network enables patients to be monitored during their daily living, without any constraints. Therefore, the proposed method can be used to develop Activities of Daily Living (ADL) monitoring devices for the elderly or movement impaired people. A medical center would be able to remotely monitor the current state of elderly people and support first-aid in emergency cases. In addition, this method will reduce medical costs in society, where the average life expectancy is increasing.

The Estimation of Activated Prefrontal Brain Area due to The Execution of Mental Tasks using fNIRS (Mental Task 수행에 의한 전전두엽 활성 영역의 fNIRS 기반 추정)

  • Hong, Seunghyeok;Lee, Jongmin;Heo, Jeong;Baek, Hyun Jae;Park, Kwang Suk
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.177-182
    • /
    • 2015
  • The activation of prefrontal cortex of brain during some mental tasks like mental arithmetic induce has been studied using hemodynamic imaging modalities. In this study, we focused on the differentiation of activated area in local prefrontal brain caused by the different mental activities as well as evaluating the classification accuracy of in-house fNIRS system. The study preliminarily validated the device including the signal quality and tightness of contact between detectors and prefrontal area. Experimental results of mental tasks on 5 subjects showed the subject dependent tendencies in correlated prefrontal activation and the area of highest accuracy.

Development of Sleep-disordered Breathing Detection System using Air-mattress and Pulse Oximeter (에어 매트리스와 산소 포화도 측정기를 이용한 수면호흡장애 자동 검출 시스템 개발)

  • Jeong, Pil-Soo;Park, Jong-Uk;Joo, Eun-Youn;Lee, Kyoung-Joung
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.153-162
    • /
    • 2017
  • The present study proposes a system that can detect sleep-disordered breathing automatically using an air mattress and oxygen saturation. A thin air mattress was fabricated to reduce discomfort during sleep, and respiration signals were acquired. The system was configured to be synchronized with a polysomnography to receive signals simultaneously with other bio-signals. The present study has been conducted with nine adult male and female patients with sleep-disordered breathing, and sleep-disordered breathing events have been detected by applying the signals acquired from the subjects to the rule-based detection algorithm. The sensitivity and positive predictive values were found to evaluate the performance of the system, which are 91.4% and 89.7% for all events, respectively. The comparison of apnea hypopnea index(AHI) between the polysomnography and the proposed method showed squared R-value of 0.9. This study presents the possibility of detecting sleep-disordered breathing at hospitals or homes using the proposed system.

The Influence of the Number of Electrodes, the Position and Direction of a Single Dipole on the Relation Between S/N ratio and EEG Dipole Source Estimation Errors (뇌전위의 단일 쌍극자 모델에서 전극의 개수, 쌍극자의 위치 및 방향이 S/N과 쌍극자 추정 오차사이의 관계에 미치는 영향에 관한 시뮬레이션 연구)

  • 김동우;배병훈
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.1
    • /
    • pp.71-76
    • /
    • 1994
  • In the source localization using single dipole model, the influence of the number of electrodes, the position and direction of a single dipole on the relation between S/W ratio and dipole parameter estimation errors is important. Monte Carlo simulation was used to investigate this influence. The forward problem was calculated using three spherical shell model, and dipole parameters were optimized by means of simplex method. As the number of electrodes became large, as the dipole went from midbrain to cortex, and as the direction of dipole changed from radial to tangential, the average and standard deviation of estimation errors became small.

  • PDF

Development of Ultrasound Sector B-Scanner(III)-Pulsed Ultrasonic Doppler System- (초음파 섹터 B-스캐너의 개발(III)-초음파 펄스 도플러 장치-)

  • 백광렬;안영복
    • Journal of Biomedical Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.139-146
    • /
    • 1986
  • Pulsed ultrasonic Doppler system is a useful diagnostic instrument to measure blood-flow-velocity, velocity profile, and volume-blood-flow. This system is more powerful compare with 2-dimensional B-scan tissue image. A system has been deve- loped and ii being evaluated using TMS 32010 DSP. We use this DSP for the purpose of real-time spectrum analyzer to obtain spectrogram in singlegate pulsed Doppler system and for the serial comb filter to cancel clutter and zero crossing counter to estimate Doppler mean frequency in multigate pulsed Doppler system. The Doppler shift of the backscattered signals is sensed in a phase detector. This Doppler signal corresponds to the mean velocity over a some region in space defined by the ultrasonic beam dimensions, transmitted pulse duration, and transducer ban(iwidth. Multi- gate pulsed Doppler system enable the transcutaneous and simultaneous assessment of the velocities in a number of adjacent sample volumes as a continuous function of time. A multigate pulsed Doppler system processing the information originating from presented.

  • PDF

A study on optimal Image Data Multiresolution Representation and Compression Through Wavelet Transform (Wavelet 변환을 이용한 최적 영상 데이터 다해상도 표현 및 압축에 관한 연구)

  • Kang, Gyung-Mo;Jeoung, Ki-Sam;Lee, Myoung-Ho
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.12
    • /
    • pp.31-38
    • /
    • 1994
  • This paper proposed signal decomposition and multiresolution representation through wavelet transform using wavelet orthonormal basis. And it suggested most appropriate filter for scaling function in multiresoltion representation and compared two compression method, arithmetic coding and Huffman coding. Results are as follows 1. Daub18 coefficient is most appropriate in computing time, energy compaction, image quality. 2. In case of image browsing that should be small in size and good for recognition, it is reasonable to decompose to 3 scale using pyramidal algorithm. 3. For the case of progressive transmittion where requires most grateful image reconstruction from least number of sampls or reconstruction at any target rate, I embedded the data in order of significance after scaling to 5 step. 4. Medical images such as information loss is fatal have to be compressed by lossless method. As a result from compressing 5 scaled data through arithmetic coding and Huffman coding, I obtained that arithmetic coding is better than huffman coding in processing time and compression ratio. And in case of arithmetic coding I could compress to 38% to original image data.

  • PDF

Electrohydraulic Pump-Driven Closed-Loop Blood Pressure Regulatory System

  • Ahn, Jae-Mok
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.4
    • /
    • pp.449-454
    • /
    • 2007
  • An electrohydraulic (EH) pump-driven closed-loop blood pressure regulatory system was developed based on flow-mediated vascular occlusion using the vascular occlusive cuff technique. It is very useful for investigating blood pressure-dependant physiological variability, in particular, that could identify the principal mediators of renal autoregulation, such as tubuloglomerular feedback (TGF) and myogenic (MYO), during blood pressure regulation. To address this issue, renal perfusion pressure (RPP) should be well regulated under various experimental conditions. In this paper, we designed a new EH pump-driven RPP regulatory system capable of implementing precise and rapid RPP regulation. A closed-loop servo-controlwas developed with an optimal proportional plus integral (PI) compensation using the dynamic feedback RPP signal from animals. An in vivo performance was evaluated in terms of flow-mediated RPP occlusion, maintenance, and release responses. Step change to 80 mmHg reference from normal RPP revealed steady state error of ${\pm}3%$ during the RPP regulatory period after PI action. We obtained rapid RPP release time of approximately 300 ms. It is concluded that the proposed EH RPP regulatory system could be utilized in in vivo performance to study various pressure-flow relationships in diverse fields of physiology, and in particular, in renal autoregulation mechanisms.

Development of an Active Training System for Rehabilitation Exercise of Hemiplegic Patients (편마비 환자의 재활운동치료를 위한 능동형 상지훈련시스템 개발)

  • Lee, M.H.;Son, J.;Kim, J.Y.;Kim, Y.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • An active training system has been developed to assist the upper extremity function in patients with spasticity. We also evaluated the performance of the developed assistive system in five normal subjects and one hemiplegic patient. The maximum voluntary contraction (MVC) tests for biceps brachii and triceps brachii were performed and the relationship between linear enveloped EMG signal and the elbow joint torque was found. In order to implement an active training, our system was designed to allow isokinetic movement only when the subject generates elbow joint motion larger than the pre-fixed threshold level. The proposed EMG-feedback control method could provide active exercises, resulting in better rehabilitation protocol for spastic patients.

Development for the Index of an Anesthesia Depth using the Power Spectrum Density Analysis (뇌파 스펙트럼 분석에 의한 마취 심도 지표 개발)

  • Ye, Soo-Young;Baik, Swang-Wan;Kim, Jae-Hyung;Park, Jun-Mo;Jeon, Gye-Rok
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.4
    • /
    • pp.327-332
    • /
    • 2009
  • In this paper, new index was developed to estimate the depth of anesthesia during general anesthesia using EEG. Analysis of the power spectral density(PSD) of EEG was used to develop new parameters because EEG signal tends to have slow wave during anesthesia. Classifier for index creator was developed by using SEF, BDR and BTR parameters, which are calculated by power spectral density. EEG data were obtained from 7 patients (ASA I, II) during general anesthesia with Sevoflurane. The anesthetic depth evaluation indexes ranged from 0 to 100. The average were $86.05{\pm}10.1$, $36.98{\pm}20.2$, $15.33{\pm}13.6$, $50.87{\pm}16.5$ and $87.72{\pm}11.7$ for the states of pre-operation, induction of anesthesia, operation, awaked and post-operation, respectively. The results show that while the depth of anesthesia was evaluated, more accurate information can be provided for anesthetician.