• Title/Summary/Keyword: Biological imaging

Search Result 696, Processing Time 0.025 seconds

A Coumarin-based Fluorescent Sensor for Selective Detection of Copper (II)

  • Wang, Jian-Hong;Guo, Xin-Ling;Hou, Xu-Feng;Zhao, Hui-Jun;Luo, Zhao-Yang;Zhao, Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2400-2402
    • /
    • 2014
  • Cu (II) detection is of great importance owing to its significant function in various biological processes. In this report, we developed a novel coumarin-based chemosensor bearing the salicylaldimine unit (2) for $Cu^{2+}$ selective detection. The results from fluorescence spectra demonstrated that the sensor could selectively recognize $Cu^{2+}$ over other metal cations and the detection limit is as low as $0.2{\mu}M$. Moreover, the confocal fluorescence imaging in HepG2 cells illustrated its potential for biological applications.

Synergistic Ensemble of Optogenetic Actuators and Dynamic Indicators in Cell Biology

  • Kim, Jihoon;Heo, Won Do
    • Molecules and Cells
    • /
    • v.41 no.9
    • /
    • pp.809-817
    • /
    • 2018
  • Discovery of the naturally evolved fluorescent proteins and their genetically engineered biosensors have enormously contributed to current bio-imaging techniques. These reporters to trace dynamic changes of intracellular protein activities have continuously transformed according to the various demands in biological studies. Along with that, light-inducible optogenetic technologies have offered scientists to perturb, control and analyze the function of intracellular machineries in spatiotemporal manner. In this review, we present an overview of the molecular strategies that have been exploited for producing genetically encoded protein reporters and various optogenetic modules. Finally, in particular, we discuss the current efforts for combined use of these reporters and optogenetic modules as a powerful tactic for the control and imaging of signaling events in cells and tissues.

Three Dimensional Confocal Imaging and Biomedical Image Analysis (3차원 Confocal Imaging과 생체 영상 분석)

  • Lee, Yim-Kul
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.11
    • /
    • pp.257-261
    • /
    • 1995
  • Confocal laser scanning microscopy (CLSM)는 기존의 coherent or incoherent microscopic imaging 보다 횡축 방향 (lateral direction)으로 고해상도를 가지며, 층과 층 사이를 구분하는 광축 방향 (axial direction)의 optical sectioning에 의해 샘플의 3D 구조를 고해상도로 영상화함으로써 3D 구조 및 생체 기능 분석을 가능하게 해 준다. 본 논문에서는 CLSM에 의한 3D 영상화 원리와 촛점면 부근에서 얻어지는 광세기 분포, 얻어진 2D slice 영상의 시각화 및 응용에 대해 논의된다.

  • PDF

Importance of Volumetric Measurement Processes in Oncology Imaging Trials for Screening and Evaluation of Tumors as Per Response Evaluation Criteria in Solid Tumors

  • Vemuri, Ravi Chandra;Jarecha, Rudresh;Hwi, Kim Kah;Gundamaraju, Rohit;MaruthiKanth, Aripaka;Kulkarni, AravindRao;Reddy, Sundeep
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.2375-2378
    • /
    • 2014
  • Cancer, like any disease, is a pathologic biological process. Drugs are designed to interfere with the pathologic process and should therefore also be validated using a functional screening method directed at these processes. Screening for cancers at an appropriate time and also evaluating results is also very important. Volumetric measurement helps in better screening and evaluation of tumors. Volumetry is a process of quantification of the tumors by identification (pre-cancerous or target lesion) and measurement. Volumetric image analysis allows an accurate, precise, sensitive, and medically valuable assessment of tumor response. It also helps in identifying possible outcomes such disease progression (PD) or complete response as per Response Evaluation Criteria in Solid Tumors (RECIST).

Radiation effect on peri-implant tissue after implantation

  • Kweon, Hyeog-Sin;Song, Kwang-Yeob
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.3
    • /
    • pp.291-309
    • /
    • 2000
  • Statement of problem. There were several studies on the effects of irradiation to peri-implant bone tissue. However, no clear biological effect of irradiation on peri-implant bone tissue was reported yet. Purpose. This study compared the effect of irradiation on the surrounding tissue of a HA-coated implant fixture with controls. Material and methods. 6 Steri-Oss implants were implanted into the femur of 6 mongrels. The implanted dogs were divided into three groups and received irradiation. After 1 month, 2months and 4 months healing period, the histologic examination and mobility test and digital radiographic imaging analyses were performed to compare the control and experimental group respectively. Results. The irradiated group showed slower healing than control group in light microscopic observations. The mobility test demonstrated significant less number (Periotest) in control group than that of irradiated groups. The digital radiographic imaging analysis showed that the bone density of irradiated group was higher than control group. Conclusion. Generally, control group showed favorable biological response and less mobility than irradiated group. The conflict result of bone density value were measured by the digital radiographic imaging analysis. The digital radiographic imaging analysis needs more research in future.

  • PDF

A Review on Brain Imaging Studies of Suicide in Youth (청소년기 자살에 대한 뇌영상 연구)

  • Lee, Suji;Kim, Shinhye;Yoon, Sujung
    • Korean Journal of Biological Psychiatry
    • /
    • v.28 no.2
    • /
    • pp.36-49
    • /
    • 2021
  • Suicide is a leading cause of death worldwide, especially among adolescents and young adults. Considering this fact, it is imperative that we understand the neural mechanisms underlying suicidal thoughts and behaviors in youth from a neurodevelopmental perspective. In this review, we focused on the magnetic resonance imaging studies that examined the neural correlates of suicidal ideations (SI) or attempts (SA) in youth. We reviewed twenty-three cross-sectional studies reporting the structural and functional alterations in association with SI or SA among adolescents and young adults with various mental disorders. The previous literature suggests that the dorsolateral prefrontal cortex, anterior cingulate cortex, and ventral frontolimbic circuit, may play an important role in the pathophysiology of suicidal behavior in youth through altered top-down control over emotion and impulsivity. Future studies with a longitudinal design and using multimodal imaging techniques may be of help to identify novel therapeutic targets specific for youth with suicidal thoughts and behaviors.

Adult stem cell lineage tracing and deep tissue imaging

  • Fink, Juergen;Andersson-Rolf, Amanda;Koo, Bon-Kyoung
    • BMB Reports
    • /
    • v.48 no.12
    • /
    • pp.655-667
    • /
    • 2015
  • Lineage tracing is a widely used method for understanding cellular dynamics in multicellular organisms during processes such as development, adult tissue maintenance, injury repair and tumorigenesis. Advances in tracing or tracking methods, from light microscopy-based live cell tracking to fluorescent label-tracing with two-photon microscopy, together with emerging tissue clearing strategies and intravital imaging approaches have enabled scientists to decipher adult stem and progenitor cell properties in various tissues and in a wide variety of biological processes. Although technical advances have enabled time-controlled genetic labeling and simultaneous live imaging, a number of obstacles still need to be overcome. In this review, we aim to provide an in-depth description of the traditional use of lineage tracing as well as current strategies and upcoming new methods of labeling and imaging.

EEG Current Source Imaging using VEP Data Recorded inside a 3.0T MRI Magnet

  • Han Jae Y.;Choi Young H.;Im Chang H.;Kim Tae-S.;Lee Soo Y.
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.2
    • /
    • pp.95-99
    • /
    • 2005
  • We have performed EEG current source imaging on the cortical surface using visual evoked potentials (VEPs) recorded inside a 3.0 T MRI magnet. In order to remove ballistocardiogram (BCG) artifacts in the VEPs, an improved BCG template subtraction technique is devised. Using the cortically constrained current source imaging technique and pattern-reversal visual stimulations, we have obtained current source maps from 10 subjects. To validate the EEG current source imaging inside the magnet, we have compared the current source maps to the ones obtained outside the magnet. The experimental results demonstrate that there is a strong correspondence between the current source maps, proving that current source imaging is feasible with the evoked potentials recorded inside a 3.0 T MRI magnet.

Recent Progress in MRI Contrast Agent with Ceramic LDH Nanohybrids (세라믹 LDH 나노하이브리드를 이용한 MRI 조영제의 최신 연구동향)

  • Ha, Seongjin;Jin, Wenji;Park, Dae-Hwan
    • Ceramist
    • /
    • v.22 no.3
    • /
    • pp.269-280
    • /
    • 2019
  • Ceramic layered double hydroxide (LDH) nanohybrids have attracted considerable interest in biomedical science due to their unique structural feature and characteristics in biological condition. Many studies on LDH nanoparticles have been reported in diagnosis applications including magnetic resonance imaging (MRI) contrast agents in order to not only provide better imaging performance through multimodal imaging strategy, but realize therapeutic function which treat cancers in one platform. This review highlights the recent progress in MRI T1 contrast agent, dual modal imaging system, and MRI-guided drug delivery systems ranging from synthetic method and characterization to evaluation in vitro and in vivo based on the ceramic LDH nanohybrids. Future research directions are also suggested for next-generation bio-imaging contrast agent.

Common-path Optical Coherence Tomography for Biomedical Imaging and Sensing

  • Kang, Jin-U.;Han, Jae-Ho;Liu, Xuan;Zhang, Kang
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.1-13
    • /
    • 2010
  • This paper describes a development of a fiber optic common-path optical coherence tomography (OCT) based imaging and guided system that possess ability to reliably identify optically transparent targets that are on the micron scale; ability to maintain a precise and safe position from the target; ability to provide spectroscopic imaging; ability to imaging biological target in 3-D. The system is based on a high resolution fiber optic Common-Path OCT (CP-OCT) that can be integrated into various mini-probes and tools. The system is capable of obtaining >70K A-scan per second with a resolution better than $3\;{\mu}m$. We have demonstrated that the system is capable of one-dimensional real-time depth tracking, tool motion limiting and motion compensation, oxygen-saturation level imaging, and high resolution 3-D images for various biomedical applications.