• Title/Summary/Keyword: Biological hazards

Search Result 102, Processing Time 0.017 seconds

The effects of microplastics on marine ecosystem and future research directions (미세플라스틱의 해양 생태계에 대한 영향과 향후 연구 방향)

  • Kim, Kanghee;Hwang, Junghye;Choi, Jin Soo;Heo, Yunwi;Park, June-Woo
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.4
    • /
    • pp.625-639
    • /
    • 2019
  • Microplastics are one of the substances threatening the marine ecosystem. Here, we summarize the status of research on the effect of microplastics on marine life and suggest future research directions. Microplastics are synthetic polymeric compounds smaller than 5 mm and these materials released into the environment are not only physically small but do not decompose over time. Thus, they accumulate extensively on land, from the coast to the sea, and from the surface to the deep sea. Microplastic can be ingested and accumulated in marine life. Furthermore, the elution of chemicals added to plastic represents another risk. Microplastics accumulated in the ocean affect the growth, development, behavior, reproduction, and death of marine life. However, the properties of microplastics vary widely in size, material, shape, and other aspects and toxicity tests conducted on several properties of microplastics cannot represent the hazards of all other microplastics. It is necessary to evaluate the risks according to the types of microplastic, but due to their variety and the lack of uniformity in research results, it is difficult to compare and analyze the results of previous studies. Therefore, it is necessary to derive a standard test method to estimate the biological risk from different types of microplastics. In addition, while most of the previous studies were conducted mostly on spheres for the convenience of the experiments, they do not properly reflect the reality that fibers and fragments are the main forms of microplastics in the marine environment and in fish and shellfish. Furthermore, studies have been conducted on additives and POPs (persistent organic pollutants) in plastics, but little is known about their toxic effects on the body. The effects of microplastics on the marine ecosystems and humans could be identified in more detail if standard testing methods are developed, microplastics in the form of fibers and fragments rather than spheres are tested, and additives and POPs are analyzed. These investigations will allow us to identify the impact of microplastics on marine ecosystems and humans in more detail.

Acidification of Pig Slurry with Sugar for Reducing Methane Emission during Storage (메탄 배출 저감을 위한 설탕을 이용한 돈 슬러리의 산성화)

  • Im, Seongwon;Oh, Sae-Eun;Hong, Do-giy;Kim, Dong-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.3
    • /
    • pp.81-89
    • /
    • 2019
  • The major problem encountered during the storage of pig slurry (PS) is the release of huge amounts of greenhouse gases (GHGs), which are dominated by methane ($CH_4$). To reduce this, concentrated sulfuric acid has been used as an additive to control the pH of pig slurry to 5.0-6.0. However, other low-risk substitutes have been developed due to some limitations to its use, such as corrosiveness, and hazards to animal and human health. In this study, sugar addition was proposed as an eco-friendly approach for limiting $CH_4$ emission from PS during storage. The pH of PS has been reduced from $7.1{\pm}0.1$ (control) to $5.8{\pm}0.1$, $4.6{\pm}0.1$, $4.4{\pm}0.1$, $4.1{\pm}0.1$, and $4.0{\pm}0.1$, by the addition of 10, 20, 30, 40, and 50 g sugar/L, respectively. Lactate, acetate, and propionate were detected as the dominant organic acids and at sugar concentration above 20 g/L, lactate concentration represented 42-72% (COD basis) of total organic acids. For 40 d of storage, $20.6{\pm}2.3kg\;CO_2\;eq./ton\;PS$ was emitted in the control. Such emission, however, was found to be reduced to $8.7{\pm}0.4$ and $0.4{\pm}0.1kg\;CO_2\;eq./ton\;PS$ at 10 and 20 g/L, respectively. Small amount of $CH_4$ from PS at 10 g/L was emitted until 30 d of storage, while for rest of storage period, it has increased to $8.7{\pm}0.4kg\;CO_2\;eq./ton\;PS$ ( 40% of the control) when methanogens have recovered by increasing pH to 7.0. By the end of storage, VS and COD removal in the control reached 24% and 27%, while their ranges reached 15-4% and 12-17% in the sugar added experiments, respectively. It was found that more than 90% of COD removal was done by aerobic biological process.