• 제목/요약/키워드: Biological fixation

검색결과 164건 처리시간 0.027초

Expression of EuNOD-ARP1 Encoding Auxin-repressed Protein Homolog Is Upregulated by Auxin and Localized to the Fixation Zone in Root Nodules of Elaeagnus umbellata

  • Kim, Ho Bang;Lee, Hyoungseok;Oh, Chang Jae;Lee, Nam Houn;An, Chung Sun
    • Molecules and Cells
    • /
    • 제23권1호
    • /
    • pp.115-121
    • /
    • 2007
  • Root nodule formation is controlled by plant hormones such as auxin. Auxin-repressed protein (ARP) genes have been identified in various plant species but their functions are not clear. We have isolated a full-length cDNA clone (EuNOD-ARP1) showing high sequence homology to previously identified ARP genes from root nodules of Elaeagnus umbellata. Genomic Southern hybridization showed that there are at least four ARP-related genes in the genome of E. umbellata. The cDNA clone encodes a polypeptide of 120 amino acid residues with no signal peptide or organelle-targeting signals, indicating that it is a cytosolic protein. Its cytosolic location was confirmed using Arabidopsis protoplasts expressing a EuNOD-ARP1:smGFP fusion protein. Northern hybridization showed that EuNOD-ARP1 expression was higher in root nodules than in leaves or uninoculated roots. Unlike the ARP genes of strawberry and black locust, which are negatively regulated by exogenous auxin, EuNOD-ARP1 expression is induced by auxin in leaf tissue of E. umbellata. In situ hybridization revealed that EuNOD-ARP1 is mainly expressed in the fixation zone of root nodules.

Lipid N-formylation Occurs During Fixation with Formalin

  • Kim, Min Jung;Lim, Heejin;Kim, Muwoong;Choi Yuri;Nguyen, Thy N.C.;Park, Seung Cheol;Kim, Kwang Pyo;Jung, Junyang;Kim, Min-Sik
    • Mass Spectrometry Letters
    • /
    • 제13권2호
    • /
    • pp.35-40
    • /
    • 2022
  • Human tissues and organs can be preserved intact by fixation with formalin for the future analysis of biomolecules of interest. With the advances in high-throughput methods, numerous protocols have been developed and optimized to attain the most pathophysiological information out of biomolecules, including RNA and proteins, in formalin-fixed samples. However, there is no systematic study to examine the effects of formalin fixation on the lipidome of biological samples in a global fashion. In this study, we conducted a mass spectrometry-based analysis to survey the alteration in the lipidome of mice brains by fixation methods. A total of 308 lipids were quantitatively measured using triple quadrupole mass spectrometry. We found that most were unchanged after formalin fixation except for a few lipid classes such as phosphatidylethanolamine.

High Pressure Freezing (HPF)을 이용한 조류 Ptilota filicina의 미세구조 관찰:HPF 고정법과 화학 고정법의 비교 (Ultrastructures of Ptilota filicina (Rhodophyta) by High Pressure Freezing(HPF): Comparison of HPF Fixation and Chemical Fixation)

  • 이상희;김윤중;정종만;김진규;김영민;권희석;문원진;이석훈
    • ALGAE
    • /
    • 제21권4호
    • /
    • pp.479-483
    • /
    • 2006
  • In preparation of the biological samples for electron microscopy, the chemical fixation by glutaraldehyde, paraformaldehyde, and OsO4 has been generally used for a long time. However, the chemical fixation method has some problems: the infiltration time is a little bit long and the ultrastructure of cell or tissue transforms before complete fixation of sample. So, recently, cryo-fixation is considered more often in biomedical field. In this study, we compared High Pressure Freezing (HPF) method with chemical fixation method using a algal sample (Ptilota filicina J. Agardh), which was difficult to fix using chemical fixation method. In chloroplast, the ultrastructure of thylakoid lamella and phycobilisome can not show clearly by chemical fixation. In this study we could observe the ultrastructure of thylakoid lamella and phycobilisome of chloroplast very clearly using HPF fixation. An improved images of ultrastructures of nucleus, mitochondrion and floridean starch could obtain. These results suggest that HPF method is very useful method in algal specimen for electron microscopy.

EFFECTS OF THE HERBICIDE, BUTACHLOR, ON NITROGEN FIXATION IN PHOTOTROPHIC NONSULFUR BACTERIA

  • Lee, Kyung-Mi;Kim, Jai-Soo;Lee, Hyun-Soon
    • Environmental Engineering Research
    • /
    • 제12권4호
    • /
    • pp.136-147
    • /
    • 2007
  • In an effort to identify possible microbes for seeking bioagents for remediation of herbicide-contaminated soils, seven species of phototrophic nonsulfur bacteria (Rhodobacter capsulatus and sphaeroides, Rhodospirillum rubrum, Rhodopseudomonas acidophila, blastica and viridis, Rhodomicrobium vannielii) were grown in the presence of the herbicide, butachlor, and bacterial growth rates and nitrogen fixation were measured with different carbon sources. Under general conditions, all species showed 17-53% reductions in growth rate following butachlor treatment. Under nitrogen-fixing conditions, Rb. capsulatus and Rs. rubrum showed 1-4% increases in the growth rates and 2-10% increases in nitrogen-fixing abilities, while the other 5 species showed decreases of 17-47% and 17-85%, respectively. The finding that Rp. acidophila, Rp. blastica, Rp. viridis and Rm. vannielii showed stronger inhibitions of nitrogenase activity seems to indicate that species in genera Rhodobacter and Rhodospirillum are less influenced by butachlor than those in Rhodopseudomonas and Rhodomicrobium in terms of nitrogen-fixing ability. Overall, nitrogenase activity was closely correlated with both growth rate and glutamine synthetase activity (representing nitrogen metabolism). When the carbon sources were compared, pyruvate (three carbons) was best for all species in terms of growth rate and nitrogen fixation, with malate (four carbons) showing intermediate values and ribose(five carbons) showing the lowest; these trends did not change in response to butachlor treatment. We verified that each of the 7 species had a plasmid ($12.2{\sim}23.5\;Kb$). We found that all 7 species could use butachlor as a sole carbon source and 3 species were controlled by plasmid-born genes, but it is doubtful whether plasmid-born genes were responsible to nitrogen fixation.

Synechocystis PCC 6803에 의한 이산화탄소의 생물학적 고정화 (Biological Fixation of Carbon Dioxide by Synechocystis PCC 6803)

  • 김장규;원성호;김남기
    • KSBB Journal
    • /
    • 제13권1호
    • /
    • pp.101-107
    • /
    • 1998
  • 광합성 미생물의 고농도 배양에 의한 이산화탄소 고정능에 대한 기초 연구로써 관형 광생물반응기를 이용하여 이산화탄소 조성 및 초기균체농도에 따른 성장 경향을 보았다 배지의 pH가 지어되고 있는 조건하에서 20% 이산화탄소 혼합공기가 공급되는 조건에서도 성장이 이루어졌다 $45.5{\mu}E/m^2{\cdot}s$의 광강도에서 5% 이산화탄소 혼합공기 조성과 0.45 g/L의 초기균체농도에서 성장속도가 가장 우수하였으며, 비성장속도는 0.0258 $h^{-1}$를 나타냈고, 단위 시간당 균체생성량은 0.278 g/L . day 이다. 관형 반응기에서 최대균체농도는 2.03 g/L 까지 배양되었다. 배양된 균체의 원소성분분석을 통하여 Synechocystis PCC 6803의 분자식은 $C_{1.0}H_{2.022}N_{0.194}O_{0.443}S_{0.002}$로 계산되었고, 이산화탄소 고정화속도는 0.482g-$C0_2/L$ . day의 결과를 얻었다.

  • PDF

Improvement of Histopathological Sample Preparation by Employing Microwave Heating Method on Frozen Section Specimens

  • 안승주
    • 대한의생명과학회지
    • /
    • 제13권4호
    • /
    • pp.361-368
    • /
    • 2007
  • Biological samples can be fixed either by chemical method by using chemical solution or physical methods by using heat treatment. The problem in traditional heat fixation is unsatisfactory quality due to uneven heat conduction in specimen and loss of inner cell contents. Chemical fixation method also bears several intrinsic problems like the limit in specimen size, time consumption in fixative impregnation, and loss of low molecular weight cell components. These factors deteriorate the quality of fixed specimen, thus limit the magnification and contrast of tissue pictures. Microwave heat has been reported to be a good alternative to current chemical methods to overcome these problem. In this study, we tried to introduce the microwave energy method to routine fixation work in hospital. We replaced chemical fixative with saline to provide moderate reaction condition, and used frozen section to reduce time for sample preparation. Temperature was measured at each experiment. The fixation of rat kidney tissue with 2.45 GHz electromagnetic wave and saline showed similar result to the control group fixed with traditional chemical method. Human tumor tissue fixed with 2.45 GHz electromagnetic in frozen section was improved in terms of histochemistry of PAS and immunohistochemistry of tumor marker like cytokeratin. Total turnaround time was reduced from $24\sim38$ h to to $2\sim4$ h. In conclusion, the quality of samples prepared by microwave heating method was at least as good as that of traditional method. If the condition for the fixation of different specimens is standardized, this new method could be applied to routine work in hospital, and could save working time as well.

  • PDF

선충류의 주사전자현미경적 관찰을 위한 마이크로웨이브 고정법 (Microwave fixation of Setaria Digitata for scanning electron microscopy)

  • 이산수;조경오;신길상;신성식
    • 대한수의학회지
    • /
    • 제47권2호
    • /
    • pp.203-207
    • /
    • 2007
  • Conventional processing of biological materials including nematode parasites for scanning electron microscopy includes fixation with glutaraldehyde and osmium, followed by dehydration in an ascending grade of ethanol, and finally freeze drying. This procedure takes about 8 to 12 h depending on the characteristics of samples. Microwave irradiation of 2,450 MHz enhance the action of cross-linking fixatives and can greatly accelerate various stages of tissue processing. In this study, samples of nematode parasites, Setaria digitata, were fixed by a combination of conventional chemical fixation and the microwave irradiation during the process. The microwave irradiation was also incorporated in the serial dehydration process with ethanol. The complete procedure from the initial fixation to the completion of dehydration with ethanol was reduced to 1 h with good preservation of the ultrastructural details of the specimens.

Effects of legume mixture on nitrogen fixation and transfer to grasses in spring paddy field

  • Lee, H.
    • 한국유기농업학회지
    • /
    • 제19권spc호
    • /
    • pp.161-164
    • /
    • 2011
  • Nitrogen fixation by legumes can be valuable sources for organic farming. This study was to investigate the effect of different legume mixtures on nitrogen fixation and transfer to grasses on spring paddy field. Three different mixtures were used (rye+hairy vetch, Italian ryegrass+crimson clover, oat+pea) in a randomized complete block design with three replications and sowed in pots with different sowing rate (5:5 rye:hairy vetch,7:3=Italian:crimson, 6:4=oat:pea) on early March. $(^{15}NH_4)SO_4$ solution at. 99.8 atom%$^{15}N$ was applied to the each pot at the rate of 2kg N $ha^{-1}$ on $16^{th}$ April. Forage were harvested at ground level in heading stage and separated into legume and grass. Total N content and $^{15}N$ value were determined using a continuous flow stable isotope ratio mass spectrometry. DM yield of rye+vetch, Italian+crimson and oat+pea were 6,607, 3,213 and 4,312kg/ha, respectively. Proportion of N from fixation was 0.73(rye+vetch), 0.42(Italian+crimson) and 0.93(oat+pea). The percentages of N transfer from legume to grass were from 61% to 24% in different method by treatments and -35% to 21% in isotope dilution method.

The Influence of Fixation Rigidity on Intervertebral Joints - An Experimental Comparison between a Rigid and a Flexible System

  • Kim, Won-Joong;Lee, Sang-Ho;Shin, Song-Woo;Rivard, Charles H.;Coillard, Christine;Rhalmi, Souad
    • Journal of Korean Neurosurgical Society
    • /
    • 제37권5호
    • /
    • pp.364-369
    • /
    • 2005
  • Objective: Spinal instrumentation without fusion often fails due to biological failure of intervertebral joints (spontaneous fusion, degeneration, etc). The purpose of this study is to investigate the influence of fixation rigidity on viability of intervertebral joints. Methods: Twenty pigs in growing period were subjected to posterior segmental fixation. Twelve were fixed with a rigid fixation system(RF) while eight were fixed with a flexible unconstrained implant(FF). At the time of the surgery, a scoliosis was created to monitor fixation adequacy. The pigs were subjected to periodic radiological examinations and 12pigs (six in RF, six in FF) were euthanized at 12-18months postoperatively for analysis. Results: The initial scoliotic curve was reduced from $31{\pm}5^{\circ}$ to $27{\pm}8^{\circ}$ in RF group (p=0.37) and from $19{\pm}4^{\circ}$ to $17{\pm}5^{\circ}$ in FF group (p=0.21). Although severe disc degeneration and spontaneous fusion of facet joints were observed in RF group, disc heights of FF group were well maintained without major signs of degeneration. Conclusion: The viability of the intervertebral joints depends on motion spinal fixation. Systems allowing intervertebral micromotion may preserve the viability of intervertebral discs and the facet joint articular cartilages while maintaining a reasonably stable fixation.

최적 배양 조건을 이용한 CO2 제거 목적의 담수 미세조류 Parachlorella kessleri의 바이오매스 생산성 향상 (Enhanced Biomass Productivity of Freshwater microalga, Parachlorella kessleri for Fixation of Atmospheric CO2 Using Optimal Culture Conditions)

  • 김지훈;홍선우;김진우;손병락;김미경;김용환;설진현;전수환
    • 한국해양바이오학회지
    • /
    • 제16권1호
    • /
    • pp.36-44
    • /
    • 2024
  • This study attempted to improve the growth of the freshwater microalgae, Parachlorella kessleri, through the sequential optimization of culture conditions. This attempt aimed to enhance the microalgae's ability to fixate atmospheric CO2. Culture temperature and light intensity appropriate for microalgal growth were scanned using a high-throughput photobioreactor system. The supplied air flow rate varied from 0.05 to 0.3 vvm, and its effect on the growth rate of P. kessleri was determined. Next, sodium phosphate buffer was added to the culture medium (BG11) to enhance CO2 fixation by increasing the availability of CO2(HCO3-) in the culture medium. The results indicated that optimal culture temperature and light intensity were 20℃-25℃ and 300 μE/m2/s, respectively. Growth rates of P. kessleri under various air flow rates highly depended on the increase of the culture's flow rate and pH which determines CO2 availability. Adding sodium phosphate buffer to BG11 to maintain a constant neutral pH (7.0) improved microalgal growth compared to control conditions (BG11 without sodium phosphate). These results indicate that the CO2 fixation rate in the air could be enhanced via the sequential optimization of microalgal culture conditions.