• Title/Summary/Keyword: Biological Markers

Search Result 498, Processing Time 0.022 seconds

Licochalcone H Targets EGFR and AKT to Suppress the Growth of Oxaliplatin -Sensitive and -Resistant Colorectal Cancer Cells

  • Seung-On Lee;Mee-Hyun Lee;Ah-Won Kwak;Jin-Young Lee;Goo Yoon;Sang Hoon Joo;Yung Hyun Choi;Jin Woo Park;Jung-Hyun Shim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.6
    • /
    • pp.661-673
    • /
    • 2023
  • Treatment of colorectal cancer (CRC) has always been challenged by the development of resistance. We investigated the antiproliferative activity of licochalcone H (LCH), a regioisomer of licochalcone C derived from the root of Glycyrrhiza inflata, in oxaliplatin (Ox)-sensitive and -resistant CRC cells. LCH significantly inhibited cell viability and colony growth in both Ox-sensitive and Ox-resistant CRC cells. We found that LCH decreased epidermal growth factor receptor (EGFR) and AKT kinase activities and related activating signaling proteins including pEGFR and pAKT. A computational docking model indicated that LCH may interact with EGFR, AKT1, and AKT2 at the ATP-binding sites. LCH induced ROS generation and increased the expression of the ER stress markers. LCH treatment of CRC cells induced depolarization of MMP. Multi-caspase activity was induced by LCH treatment and confirmed by Z-VAD-FMK treatment. LCH increased the number of sub-G1 cells and arrested the cell cycle at the G1 phase. Taken together LCH inhibits the growth of Ox-sensitive and Ox-resistant CRC cells by targeting EGFR and AKT, and inducing ROS generation and ER stress-mediated apoptosis. Therefore, LCH could be a potential therapeutic agent for improving not only Ox-sensitive but also Ox-resistant CRC treatment.

Influence of 10-Methacryloyloxydecyl Dihydrogen Phosphate on Cellular Senescence in Osteoblast-Like Cells

  • Ju Yeon Ban;Sang-Im Lee
    • Journal of dental hygiene science
    • /
    • v.23 no.4
    • /
    • pp.264-270
    • /
    • 2023
  • Background: Resin-based dental materials release residual monomers or other substances from incomplete polymerization into the oral cavity, thereby causing adverse biological effects on oral tissue. 10-Methacryloyloxydecyl dihydrogen phosphate (10-MDP), an acidic monomer containing dihydrogen phosphate and methacrylate groups, is the most commonly used component of resin-based dental materials, such as restorative composite resins, dentin adhesives, and resin cements. Although previous studies have reported the cytotoxicity and biocompatibility in various cultured cells, the effects of resin monomers on cellular aging have not been reported to date. Therefore, this study aimed to investigate the effects of the resin monomer 10-MDP on cellular senescence and inflamm-aging in vitro. Methods: After stimulation with 10-MDP, MC3T3-E1 osteoblast-like cells were examined for cell viability by WST-8 assay and reactive oxygen species (ROS) production by flow cytometry. The protein and mRNA levels of molecular markers of aging were determined by western blotting and RT-PCR analysis, respectively. Results: Treatment with 0.05 to 1 mM 10-MDP for 24 hours reduced the survival of MC3T3-E1 cells in a concentration-dependent manner. The intracellular ROS levels in the 10-MDP-treated experimental group were significantly higher than those in the control group. 10-MDP at a concentration of 0.1 mM increased p53, p16, and p21 protein levels. Additionally, an aging pattern was observed with blue staining due to intracellular senescence-associated beta-galactosidase activity. Treatment with 10-MDP increased the levels of tumor necrosis factor-α, interleukin (IL)-1β, IL-6 and IL-8, however their expression was decreased by mitogen-activated-protein-kinase (MAPK) inhibitors. Conclusion: Taken together, these results suggest that the exposure of osteoblast-like cells to the dental resin monomer 10-MDP, increases the level of cellular senescence and the inflammatory response is mediated by the MAPK pathway.

Recombinant Human HAPLN1 Mitigates Pulmonary Emphysema by Increasing TGF-β Receptor I and Sirtuins Levels in Human Alveolar Epithelial Cells

  • Yongwei Piao;So Yoon Yun;Zhicheng Fu;Ji Min Jang;Moon Jung Back;Ha Hyung Kim;Dae Kyong Kim
    • Molecules and Cells
    • /
    • v.46 no.9
    • /
    • pp.558-572
    • /
    • 2023
  • Chronic obstructive pulmonary disease (COPD) will be the third leading cause of death worldwide by 2030. One of its components, emphysema, has been defined as a lung disease that irreversibly damages the lungs' alveoli. Treatment is currently unavailable for emphysema symptoms and complete cure of the disease. Hyaluronan (HA) and proteoglycan link protein 1 (HAPLN1), an HA-binding protein linking HA in the extracellular matrix to stabilize the proteoglycan structure, forms a bulky hydrogel-like aggregate. Studies on the biological role of the full-length HAPLN1, a simple structure-stabilizing protein, are limited. Here, we demonstrated for the first time that treating human alveolar epithelial type 2 cells with recombinant human HAPLN1 (rhHAPLN1) increased TGF-β receptor 1 (TGF-β RI) protein levels, but not TGF-β RII, in a CD44-dependent manner with concurrent enhancement of the phosphorylated Smad3 (p-Smad3), but not p-Smad2, upon TGF-β1 stimulation. Furthermore, rhHAPLN1 significantly increased sirtuins levels (i.e., SIRT1/2/6) without TGF-β1 and inhibited acetylated p300 levels that were increased by TGF-β1. rhHAPLN1 is crucial in regulating cellular senescence, including p53, p21, and p16, and inflammation markers such as p-NF-κB and Nrf2. Both senile emphysema mouse model induced via intraperitoneal rhHAPLN1 injections and porcine pancreatic elastase (PPE)-induced COPD mouse model generated via rhHAPLN1-containing aerosols inhalations showed a significantly potent efficacy in reducing alveolar spaces enlargement. Preclinical trials are underway to investigate the effects of inhaled rhHAPLN1-containing aerosols on several COPD animal models.

Loss of hepatic Sirt7 accelerates diethylnitrosamine (DEN)-induced formation of hepatocellular carcinoma by impairing DNA damage repair

  • Yuna Kim;Baeki E. Kang;Karim Gariani;Joanna Gariani;Junguee Lee;Hyun-Jin Kim;Chang-Woo Lee;Kristina Schoonjans;Johan Auwerx;Dongryeol Ryu
    • BMB Reports
    • /
    • v.57 no.2
    • /
    • pp.98-103
    • /
    • 2024
  • The mammalian sirtuin family (SIRT1-SIRT7) has shown diverse biological roles in the regulation and maintenance of genome stability under genotoxic stress. SIRT7, one of the least studied sirtuin, has been demonstrated to be a key factor for DNA damage response (DDR). However, conflicting results have proposed that Sirt7 is an oncogenic factor to promote transformation in cancer cells. To address this inconsistency, we investigated properties of SIRT7 in hepatocellular carcinoma (HCC) regulation under DNA damage and found that loss of hepatic Sirt7 accelerated HCC progression. Specifically, the number, size, and volume of hepatic tumor colonies in diethylnitrosamine (DEN) injected Sirt7-deficient liver were markedly enhanced. Further, levels of HCC progression markers and pro-inflammatory cytokines were significantly elevated in the absence of hepatic Sirt7, unlike those in the control. In chromatin, SIRT7 was stabilized and colocalized to damage site by inhibiting the induction of γH2AX under DNA damage. Together, our findings suggest that SIRT7 is a crucial factor for DNA damage repair and that hepatic loss-of-Sirt7 can promote genomic instability and accelerate HCC development, unlike early studies describing that Sirt7 is an oncogenic factor.

Single-cell RNA sequencing reveals the heterogeneity of adipose tissue-derived mesenchymal stem cells under chondrogenic induction

  • Jeewan Chun;Ji-Hoi Moon;Kyu Hwan Kwack;Eun-Young Jang;Saebyeol Lee;Hak Kyun Kim;Jae-Hyung Lee
    • BMB Reports
    • /
    • v.57 no.5
    • /
    • pp.232-237
    • /
    • 2024
  • This study investigated how adipose tissue-derived mesenchymal stem cells (AT-MSCs) respond to chondrogenic induction using droplet-based single-cell RNA sequencing (scRNA-seq). We analyzed 37,219 high-quality transcripts from control cells and cells induced for 1 week (1W) and 2 weeks (2W). Four distinct cell clusters (0-3), undetectable by bulk analysis, exhibited varying proportions. Cluster 1 dominated in control and 1W cells, whereas clusters (3, 2, and 0) exclusively dominated in control, 1W, and 2W cells, respectively. Furthermore, heterogeneous chondrogenic markers expression within clusters emerged. Gene ontology (GO) enrichment analysis of differentially expressed genes unveiled cluster-specific variations in key biological processes (BP): (1) Cluster 1 exhibited up-regulation of GO-BP terms related to ribosome biogenesis and translational control, crucial for maintaining stem cell properties and homeostasis; (2) Additionally, cluster 1 showed up-regulation of GO-BP terms associated with mitochondrial oxidative metabolism; (3) Cluster 3 displayed up-regulation of GO-BP terms related to cell proliferation; (4) Clusters 0 and 2 demonstrated similar up-regulation of GO-BP terms linked to collagen fibril organization and supramolecular fiber organization. However, only cluster 0 showed a significant decrease in GO-BP terms related to ribosome production, implying a potential correlation between ribosome regulation and the differentiation stages of AT-MSCs. Overall, our findings highlight heterogeneous cell clusters with varying balances between proliferation and differentiation before, and after, chondrogenic stimulation. This provides enhanced insights into the single-cell dynamics of AT-MSCs during chondrogenic differentiation.

Evaluating the effect of conditioned medium from mesenchymal stem cells on differentiation of rat spermatogonial stem cells

  • Hoda Fazaeli;Mohsen Sheykhhasan;Naser Kalhor;Faezeh Davoodi Asl;Mojdeh Hosseinpoor Kashani;Azar Sheikholeslami
    • Anatomy and Cell Biology
    • /
    • v.56 no.4
    • /
    • pp.508-517
    • /
    • 2023
  • In cancer patients, chemo/radio therapy may cause infertility by damaging the spermatogenesis affecting the self-renewal and differentiation of spermatogonial stem cells (SSCs). In vitro differentiation of stem cells especially mesenchymal stem cells (MSCs) into germ cells has recently been proposed as a new strategy for infertility treatment. The aim of this study was to evaluate the proliferation and differentiation of SSCs using their co-culture with Sertoli cells and conditioned medium (CM) from adipose tissue-derived MSCs (AD-MSCs). Testicular tissues were separated from 2-7 days old neonate Wistar Rats and after mechanical and enzymatic digestion, the SSCs and Sertoli cells were isolated and cultured in Dulbecco's modified eagle medium with 10% fetal bovine serum, 1X antibiotic, basic fibroblast growth factor, and glial cell line-derived neurotrophic factor. The cells were treated with the CM from AD-MSCs for 12 days and then the expression level of differentiation-related genes were measured. Also, the expression level of two major spermatogenic markers of DAZL and DDX4 was calculated. Scp3, Dazl, and Prm1 were significantly increased after treatment compared to the control group, whereas no significant difference was observed in Stra8 expression. The immunocytochemistry images showed that DAZL and DDX4 were positive in experimental group comparing with control. Also, western blotting revealed that both DAZL and DDX4 had higher expression in the treated group than the control group, however, no significant difference was observed. In this study, we concluded that the CM obtained from AD-MSCs can be considered as a suitable biological material to induce the differentiation in SSCs.

Phloroglucinol Enhances Anagen Signaling and Alleviates H2O2-Induced Oxidative Stress in Human Dermal Papilla Cells

  • Seokmuk Park;Ye Jin Lim;Hee Su Kim;Hee-Jae Shin;Ji-Seon Kim;Jae Nam Lee;Jae Ho Lee;Seunghee Bae
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.812-827
    • /
    • 2024
  • Phloroglucinol (PG) is one of the abundant isomeric benzenetriols in brown algae. Due to its polyphenolic structure, PG exhibits various biological activities. However, the impact of PG on anagen signaling and oxidative stress in human dermal papilla cells (HDPCs) is unknown. In this study, we investigated the therapeutic potential of PG for improving hair loss. A non-cytotoxic concentration of PG increased anagen-inductive genes and transcriptional activities of β-Catenin. Since several anagen-inductive genes are regulated by β-Catenin, further experiments were performed to elucidate the molecular mechanism by which PG upregulates anagen signaling. Various biochemical analyses revealed that PG upregulated β-Catenin signaling without affecting the expression of Wnt. In particular, PG elevated the phosphorylation of protein kinase B (AKT), leading to an increase in the inhibitory phosphorylation of glycogen synthase kinase 3 beta (GSK3β) at serine 9. Treatment with the selective phosphoinositide 3-kinase/AKT inhibitor, LY294002, restored the increased AKT/GSK3β/β-Catenin signaling and anagen-inductive proteins induced by PG. Moreover, conditioned medium from PG-treated HDPCs promoted the proliferation and migration of human epidermal keratinocytes via the AKT signaling pathway. Subsequently, we assessed the antioxidant activities of PG. PG ameliorated the elevated oxidative stress markers and improved the decreased anagen signaling in hydrogen peroxide (H2O2)-induced HDPCs. The senescence-associated β-galactosidase staining assay also demonstrated that the antioxidant abilities of PG effectively mitigated H2O2-induced senescence. Overall, these results indicate that PG potentially enhances anagen signaling and improves oxidative stress-induced cellular damage in HDPCs. Therefore, PG can be employed as a novel therapeutic component to ameliorate hair loss symptoms.

Cloning and Activity Analysis of the FosB Promoter Region from Human Genomic DNA (사람 핵DNA로부터 FosB 유전자 프로모터 클로닝 및 활성도 분석)

  • Na, Han-Heom;Kang, Yoonsung;Kim, Keun-Cheol
    • Journal of Life Science
    • /
    • v.27 no.8
    • /
    • pp.857-863
    • /
    • 2017
  • The FBJ murine osteosarcoma viral oncogene homolog B (FosB) gene is located at chromosome 19, and encodes 43 Kda protein. Functionally, the FosB gene is important for differentiation, development, and pathogenesis. Furthermore, the FosB gene is suggested as possible biomarker for tracing disease prognosis. In this study, we constructed plasmid containing a FosB promoter region and evaluate its promoter activity. We analyzed the putative promoter region in FosB genomic DNA using bioinformatics program, and we found important regulatory elements in 1 Kb upstream from transcription start site (TSS). Therefore, we performed polymerase chain reaction (PCR) amplification on region from-1,555 upstream to +73 of the FosB genomic DNA, and PCR product was inserted into TA vector to create the $TA-1^{st}FosBp$ plasmid. We then prepared the primer sets, which contain a restriction enzyme site for Kpn1 and Nhe1, in order to reinsert into the TA vector to prepare $TA-2^{nd}FosBp$ plasmid. It was finally subcloned into pGL3-luc vector after enzyme cutting. To evaluate whether the cloned plasmid is useful in cell based experiment, we performed luciferase assay with pGL3-FosBp-luctransfection. FosB promoter activity was increased compared to empty vector, and this activity was significantly increased by treatment of doxorubicin and taxol. We obtained consistent data on regulation of FosB gene expression after anticancer drug treatment using Western blot analysis. The results suggest that promoter cloning of the human FosB gene is very useful for studying gene expression and analyzing biomarkers.

Isolation of Mutants Susceptible to Rice Blast from DEB-treated Rice Population (DEB 처리에 의해 유도된 벼 돌연변이 집단으로부터 도열병 감수성 돌연변이 분리)

  • Kim, Hye-Kyung;Lee, Sang-Kyu;Han, Mu-Ho;Jeon, Yong-Hee;Lee, Gi-Hwan;Lee, Youn-Hyung;Bhoo, Seong-Hee;Hahn, Tae-Ryong;Jeon, Jong-Seong
    • Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.339-344
    • /
    • 2005
  • Rice blast, which is caused by the fungus Magnaporthe grisea, is one of the most destructive diseases of rice. To identify genes involving in the signal transduction pathways that mediate rice blast resistance, we screened over 2,000 mutant lines of a highly resistant variety RIL260 that were generated by using a DEB (1, 3-Butadiene diepoxide) treatment method. In the mutant population, the frequency of albino plants was 6.7%, indicating that this population has a high frequency of mutations in the genome. The primary screening identified 29 mutant plants that exhibit a complete or partial loss of the resistance to rice blast. Among them, M5465, the most susceptible line, was subsequently examined by DNA gel-blot experiments using DNA molecular markers of Pi5(t) that has been previously identified as a durable resistance locus in RIL260. The result revealed that a large deletion and rearrangement of genomic DNA occurred in the Pi5(t) locus. The results suggest that DEB can be used as an efficient mutagen to induce large scale mutations in the rice genome. The isolated mutants should be useful for elucidating the Pi5(t)-mediated signaling pathways of rice blast resistance.

GC-MASS Analysis and Microbial Enumeration for the Identification of Spoiled Red Pepper Powder (GC-MASS 분석과 미생물 균수 차이에 의한 희아리 고춧가루 판별)

  • Jeong, Su-Jin;Han, Sang-Bae;Uhm, Tai-Boong
    • Journal of Food Hygiene and Safety
    • /
    • v.23 no.3
    • /
    • pp.191-197
    • /
    • 2008
  • This work was intended for the identification of markers that are found only in the spoiled red pepper powder. When analyzed by GC/MASS, the spoiled red pepper powder contains characteristic naphthalene derivatives, 1, 2, 3, 5, 6, 7, 8, $8\alpha$-octahydro-1, $8\alpha$-dimethyl-7-(1-methylethenyl)-naphthalene and 2-isopropenyl-$4\alpha$, 8-dimethyl-1, 2, 3, 4, $4\alpha$, 5, 6, $8\alpha$-octahydronaphthalene, which have not found in the normal red pepper powder. In addition, microscopic observation and microbial enumeration of the red pepper powder had been performed. Images by scanning electron microscopy showed that the surfaces of spoiled pepper powder were rough with many kinds of microbes, compared with those of normal red pepper powder. A good correlation between the bacterial and fungal counts in the same sample was observed and could be clearly classified into two groups, the normal and the spoiled group, by difference in the microbial counts. These results suggest that the spoiled red pepper powder can be identified by a combination of GC/MASS, microbial counts, and scanning electron microscopy.