• Title/Summary/Keyword: Biolog system

Search Result 76, Processing Time 0.026 seconds

Chemical Properties of Pine Sprout Tea and Identification of the Related Yeasts (송순차의 화학적 특성 및 품질관련 효모의 동정)

  • Kang, Jeong-Hwa;Yoo, Maeng-Ja;Chung, Hee-Jong
    • Journal of the Korean Society of Food Culture
    • /
    • v.15 no.4
    • /
    • pp.233-239
    • /
    • 2000
  • In order to optimize the quality of pine sprout tea, its chemical properties were analyzed and the yeasts associated with the quality of pine sprout tea during the storage were isolated and identified. In proximate composition moisture content was 20.13%, but other components except sugar were relatively low. Sugars such as glucose(30.15%), fructose(19.57%), and sucrose(9.27%) were major sugars which contained up to 76.73%. Total vitamin C and soluble tannin contents were 11.31 mg% and 68.31 mg%, respectively. Thirteen kinds of free amino acids were detected, but they were contained only in trace. In fatty acid composition 64.69% of fatty aids composed mainly of saturated fatty acids and major fatty acids were oleic acid, palmitic acid, and tricosaenoic acid. Among 8 mineral elements detected, calcium content was highest with 79.00 mg% and followed by potassium(45.16 mg%) and magnesium(8.93 mg%). The sweetness of pine sprout tea was gradually decreased from $70^{\circ}\;Brix\;to\;63^{\circ}\;Brix$ and 3.2% of ethanol at the initial concentration was increased to 6.0% during the storage of 40 days. The yeasts associated with the quality and alcohol formation of pine sprout tea during the storage were identified by Biolog MicrostationlTM system, as Zygosaccharomyces rouxii, Kluyveromyces lodderae, Kluyveromyces wickerhamii, and Pichia fluxuum.

  • PDF

Influence of Metal Oxide Particles on Soil Enzyme Activity and Bioaccumulation of Two Plants

  • Kim, Sunghyun;Sin, Hyunjoo;Lee, Sooyeon;Lee, Insook
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1279-1286
    • /
    • 2013
  • Particle size and metal species are important to both soil microbial toxicity and phytotoxicity in the soil ecosystem. The effects of CuO and ZnO nanoparticles (NPs) and microparticles (MPs) on soil microbial toxicity, phytotoxicity, and bioaccumulation in two crops (Cucumis sativus and Zea mays) were estimated in a soil microcosm. In the microcosm system, soil was artificially contaminated with 1,000 mg/kg CuO and ZnO NPs and MPs. After 15 days, we compared the microbial toxicity and phytotoxicity by particle size. In addition, C. sativus and Z. mays were cultivated in soils treated with CuO NPs and ZnO NPs, after which the treatment effects on bioaccumulation were evaluated. NPs were more toxic than MPs to microbes and plants in the soil ecosystem. We found that the soil enzyme activity and plant biomass were inhibited to the greatest extent by CuO NPs. However, in a Biolog test, substrate utilization patterns were more dependent upon metal type than particle size. Another finding indicated that the metal NP uptake amounts of plants depend on the plant species. In the comparison between C. sativus and Z. mays, the accumulation of Cu and Zn by C. sativus was noticeably higher. These findings show that metal oxide NPs may negatively impact soil bacteria and plants. In addition, the accumulation patterns of NPs depend on the plant species.

Effects of Size of Metal Particles on Soil Microbial Community and Buck Wheat (금속 입자 크기가 토양 미생물 군집과 메밀에 미치는 영향)

  • Kim, Sung-Hyun;Kim, Jung-Eun;Gwak, Young-Ji;Kim, Yun-Ji;Lee, In-Sook
    • Journal of Environmental Science International
    • /
    • v.20 no.4
    • /
    • pp.457-463
    • /
    • 2011
  • This study was carried out to compare the toxicity of nano and micrometer particles with Cu and Zn on soil microbial community and metal uptake of buck wheat. In microcosm system, soil was incubated for 14 days after soil aliquots were artificially contaminated with 1,000 mg/kg Cu, Zn nano and micro particles, respectively. After then, buck wheat was planted in incubating soils and non incubating soils. After 14 days, we compared bioaccumulation of metal, and microbial carbon substrate utilization patterns between incubating soils and non-incubating soils. The enrichment factor (EF) values of incubating samples were greater than non-incubating soils. Dehydrogenase activity had been inhibited by Cu and Zn nanoparticles in non-incubating soil, as well as it had been inhibited by Zn micro particles in incubating soils. Results of biolog test, it was not significant different between nano particles and micro particles. It cannot be generalized that nanoparticles of metal are always more toxic to soil microbial activity and diversity than micrometer-sized particles and the toxicity needs to be assessed on a case-by-case basis.

Isolation of Compounds with Antioxidative Activity from Quickly Fermented Soy-Based Foods

  • Jang, Mi-Young;Cho, Jeong-Yong;Cho, Jeong-Il;Moon, Jae-Hak;Park, Keun-Hyung
    • Food Science and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.214-219
    • /
    • 2006
  • A bacterial strain, initially identified as B1-3, was isolated from cheonggukjang, a traditional Korean dish made from fermented soybeans. Using the Biolog system and 16S rRNA sequence analysis, we identified B1-3 as Bacillus mojavensis. We manufactured a quickly fermented soybean (QFS) food product using the B. mojavensis, and guided by their 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging ability. We isolated substances with antioxidative activity from it. Using mass spectrometry (MS) and nuclear magnetic resonance (NMR) techniques, we isolated 4 compounds from the ethyl acetate (EtOAc)-soluble neutral fraction of methyl alcohol (MeOH) extracts of the QFS food product (genistein, daidzein, 3R,4R-3-methyl-3,4-dihydroxy-2-pentanone, and 3S,4R-3-methyl-3,4-dihydroxy-2-pentanone) and 3 compounds from its acidic fraction (4-hydroxyphenylacetic acid, genistin, and daidzein). Two compounds from the neutral fraction (3R,4R-3-methyl-3,4-dihydroxy-2-pentanone and 3S,4R-3-methyl-3,4-dihydroxy-2-pentanone) were not detected in nonfermented soybeans (NFS) or in the filtrate of the LB broth used to culture B. mojavensis. However, they were detected in the filtrate of the same broth when it contained 2% glucose. These results suggest that these 2 compounds were derived from glucose (or other saccharides) in the soybean during fermentation. One compound that was found in the acidic fraction (4-hydroxyphenylacetic acid) was readily detected in NFS, but not in the culture broth. This suggests that 4-hydroxyphenylacetic acid was derived from NFS. We concluded that the antioxidative activity of cheonggukjang is a result of the interactions between soybean components and the microorganisms used in the fermentation of cheonggukjang.

Cytotoxic, Antioxidative, and ACE Inhibiting Activities of Dolsan Leaf Mustard Juice (DLMJ) Treated with Lactic Acid Bacteria

  • Yoo Eun-Jeong;Lim Hyun-Soo;Park Kyung-Ok;Choi Myeong-Rak
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.1
    • /
    • pp.60-66
    • /
    • 2005
  • This study was performed to know whether there is any change of physiological activity in DLMJ which is inoculated by lactic acid bacteria. Lactic acid bacteria were isolated from Dolsan leaf mustard Kimchi (DLMK) at $20^{\circ}C$. In the optimum ripening period, the population of Leuconostoc and Lactobacilli in the DLMK were found to be high. The Leuconostoc, Lactobacilli and Lactococci strains were identified as Leuconostoc mesenteroides, Leuconostoc gelidum, Weissella confusa, Lactobacillus plantarum, Lactobacillus raffinolactis, Lactococcus lactis and Weissella confusa using the Biolog system. The most predominant strain which was isolated from DLMK was Weissella confusa. As the results of the phylogenetic analysis using 16s rDNA sequence, the Weissella confusa turned out to be Weissella kimchii, with 99.0% similarity. To investigated the change of physiological activity in DLMJ by lactic acid bacteria, 7 predominant strains inoculated to DLMJ (Dolsan Leaf Mustard Juice). The cytotoxicity was found to be under $19.55\%$ all cases. Also, the antioxidative activity of the DLMJ treated with lactic acid bacteria was very low, which might have been due to the reduced antioxidative phytochemicals during the preparation of the sterile sample. The ACE inhibiting activity of DLMJ by inoculation with Weissella kimchii was shown to be the highest ($94.0\%$). This could be that the degradation of sulfur containing materials in DLMJ by Weissella kimchii gave rise to ACE inhibiting activity.

Studies on the Enhanced Physiological Activities of Mixed Lactic Acid Bacteria Isolated from Fermented Watery Kimchi, Dongchimi (발효된 물김치인 동치미에서 분리한 혼합 젖산균의 생리활성 증진에 대한 연구)

  • Choi, Moon-Seop;Kim, Dong-Min;Oh, Kye-Heon
    • KSBB Journal
    • /
    • v.30 no.5
    • /
    • pp.245-252
    • /
    • 2015
  • The aim of this study was to investigate the efficacy of enhanced physiological activities in cultures isolated from Korean fermented watery Kimchi, Dongchimi, of single lactic acid bacteria (LAB), and when these three are mixed LAB as probiotics. Using the BIOLOG system and 16S rRNA sequencing, the isolates were characterized, and identified and assigned to Leuconostoc mesenteroides DK-3, Leuconostoc dextranicum DK-6, and Lactobacillus curvatus DK-13, respectively. Growth rate and pH changes, production of organic acids as metabolites, and physiological activities of the single and mixed LAB cultures, were monitored and compared. In mixed LAB cultures after 72 h of incubation, the maximum concentrations of lactic acid and acetic acid were approximately 340.5 mM and 191.9 mM, respectively, and pH changed from 7.00 to 3.62. Mixed LAB cultures were able to eliminate 96.3% of nitrite. Activities of antioxidant and ${\beta}$-galactosidase were 60.3% and 16.8 units/mg, respectively. Significant antibacterial activity of the concentrated supernatants was demonstrated against several food-poisoning bacteria. Physiological activities obtained from the mixed LAB cultures have been shown to be considerably higher than those of single LAB cultures. In conclusion, these studies demonstrate that compared to the single cultures, all physiological activities in mixed LAB cultures are significantly enhanced.

Purification and Characterization of Fibrinolytic Enzyme Produced by Bacillus subtilis K7 Isolated from Korean Traditional Soy Sauce (한국재래간장 발효균 Bacillus subtilis K7 유래의 혈전용해 Protease의 정제 및 특성)

  • Kim, Doo-Young;Lee, Eun-Tag;Kim, Sang-Dal
    • Applied Biological Chemistry
    • /
    • v.46 no.3
    • /
    • pp.176-182
    • /
    • 2003
  • An alkaline fibrinolytic protease-producing bacteria was isolated front Korean traditional soy sauce and identified as Bacillus subtilis K7 from the results of analyses of its morphological and physiological properties, $API^{\circledR}$, and Biolog system. The enzyme was purified by 75% ammonium sulfate fractionation, QAE-Sephadex anion and SP-Sephadex cation exchange column chromatography and Sephadex G-100 gel filtration. The specific activity of the purified enByme was 233.9 unit/mg protein and the yield of enzyme was 3.8%. The homogeneity of the purified enzyme was confirmed by polyacrylamide gel electrophoresis. Molecular mass of the enzyme was estimated about 21,500 Da by SDS-polyacrylamide get electrophoresis and gel chromatography. The optimum temperature and pH for the enzyme activity were $40^{\circ}C$ and 9.0, respectively. The enzyme was stable in a pH range of 5.0 to 12.0, and 60% of its activity was lost on heat treatment at $50^{\circ}C$ for 20 min. The activity of the purified enzyme was inhibited by the presence of $Fe^{2+},\;Ag^{2+},\;Cu6{2+}$, iodoacetate, ethylene diamine tetraacetic acid (EDTA), and trans-1,2-diaminocycloheane-N,N,N',N'-tetraacetic acid (CDTA). The results indicates that the enzyme requires a metal ion for its enzymatic activity.

Biological Control of Strawberry Bud Rot Caused by Rhizoctonia solani AG2-1 with Antagonistic Microorganism (길함미생물에 의한 시설재배 딸기 눈마름병의 생물학적 방제)

  • 신동범;소림기언;이준탁
    • Korean Journal Plant Pathology
    • /
    • v.10 no.2
    • /
    • pp.112-118
    • /
    • 1994
  • Forth microbial isolates out of 167 isolates from the soil of controlled cultivation areas inhibited mycelial growth of Rhizoctonia solani AG2-1 causing the strawberry bud rot in vitro. Among the isolates, Kr013 and Kr020 showed suppressive effect to R. solani AG2-1 on seedlings of chinese cabbage treated by root immersion, charcoal carrier granule and drenching on 1.0% infested soil in pot. Furthemore, the corresponding effect was also revealed when the charcoal carrier granule of the isolates were treated on the seedling of strawberry that were planted on the planting hole in pot. To examine the effects of biological control in green house, it had been tested the infection rates by using two different treatments. First, the strawberry runner were planted on the nursery soil mixed with 20% charcoal carrier granule of Kr013 and Kr020 isolate respectively, and grown for 20 days before transplanting. Then the young plants form the mother plant were separated and transplanted on the 1.0% infested soil. Another method was that the charcoal carrier of Kr013 and Kr020 isolates applied to planting hole of 1.0% infested soil just before transplanting. Then the young plants were grown for 20 days on the sterilized nursery soil before transplanting. From the results, the effects of biological control was significantly higher on former treatment (e.g. the infection rates were 7.3 and 5.7%, respectively) than on the latter treatment (e.g. the corresponding value were 16.7 and 15.7%, respectively). The antagonistic isolates of Kr013 and Kr020 were respectively identified as Pseudomonas cepacia with the similarity of 55.0% and 60.0% by using the Biolog GN Microplate system.

  • PDF

Isolation, Identification and Cultural Condition of the Antagonistic Microorganism Against Salmonella gallinarum Causing Fowl Typhoid (가금티브스균 Salmonella gallinarum의 생육을 저해하는 길항미생물의 선발 및 동정)

  • 김진락;김상달
    • Journal of Life Science
    • /
    • v.13 no.6
    • /
    • pp.843-848
    • /
    • 2003
  • Diarrllea and death of chicken have been brought about by fowl typhoid caused by Salmonella gallinarum, which causes a great loss of chicken farms. For the development of the probiotic which can control a fowl typhoid of S. gallinarum without any adverse effect of commercial existing antibiotics, we isolated antagonistic intestinal bacteria against S. gallinarum from a bowel of the chicken which was pastured in a chicken farm of Gumi, Kyoungbuk. An Y3 strain which had a strong antagonistic ability to S. gallinarum was selected as a candidate of chicken probiotic microorganism among isolated strains. It was identified as a Bacillus amyloliuefaciens by 98% similarity by the result of cultural, physiological, biochemical test and Biolog system$(Microlog^{TM} 4.0)$, and named as Bacillus amyloliquefaciens Y3. The strain showed the strongest antagonistic activity and a good growth at pH 5-9, $37^{\circ}C.$

Physiological and Phylogenetic Analysis of Burkholderia sp. HY1 Capable of Aniline Degradation

  • Kahng, Hyung-Yeel;Jerome J. Kukor;Oh, Kye-Heon
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.5
    • /
    • pp.643-650
    • /
    • 2000
  • A new aniline-utilizing microorganism, strain HY1 obtained from an orchard soil, was characterized by using the BIOLOG system, an analysis of the total cellular fatty acids, and a 16S rDNA sequence. Strain HY1 was identified as a Burkholderia species, and was designated Burkholderia sp. HY1. GC and HPLC analyses revealed that Burkholderia sp. HY1 was able to degrade aniline to produce catechol, which was subsequently converted to cis,cis-muconic acid through an ortho-ring fission pathway under aerobic conditions. Strain HY1 exhibited a drastic reduction in the rate of aniline degradation when glucose was added to the aniline media. However, the addition of peptone or nitrate to the aniline media dramatically accelerated the rate of aniline degradation. A fatty acid analysis showed that strain HY1 was able to produce lipids 16:0 2OH, and 11 methyl 18:1 ${\omega}7c$ approximately 3.7-, 2.2-, and 6-fold more, respectively, when grown on aniline media than when grown on TSA. An analysison the alignment of a 1,435 bp fragment. A phylogenetic analysis of the 16S rDNA sequence based on a 1,420 bp multi-alignment sowed of the 16s rDNA sequence revealed that strain HY1 was very closely related to Burkholderia graminis with 95% similarity based that strain HY1 was placed among three major clonal types of $\beta$-Proteobacteria, including Burkholderia graminis, Burkholderia phenazinium, and Burkholderia glathei. The sequence GAT(C or G)${\b{G}}$, which is highly conserved in several locations in the 16S rDNA gene among the major clonal type strains of $\beta$-Proteobacteria, was frequently replaced with GAT(C or G)${\b{A}}$ in the 16S rDNA sequence from strain HY1.

  • PDF