• Title/Summary/Keyword: Biohydrometallurgy

Search Result 2, Processing Time 0.018 seconds

Waste Recycling Through Biological Route (생물학적(生物學的) 방법(方法)에 의한 폐기물(廢棄物)의 재활용(再活用))

  • Pradhan, Debabrata;Kim, Dong-Jin;Ahn, Jong-Gwan;Park, Kyung-Ho;Lee, Seoung-Won
    • Resources Recycling
    • /
    • v.17 no.2
    • /
    • pp.3-15
    • /
    • 2008
  • Different toxic wastes are disposed of in our surroundings and these will ultimately threaten the existence of living organisms. Biohydrometallurgy, which includes the processes of bioleaching and bioremediation through the activities of microorganisms such as bacterial or fungal species, is a technology that has the potential to overcome many environmental problems at a reasonable economic cost. Bioleaching were carried out for dissolution of metals from different materials using most important metal mobilizing bacteria such as Thiobacillus ferrooxidans, Thiobacillus thiooxidans and Laptospirillum ferrooxidans. According to the reaction, bioleaching is parted as direct and indirect mechanism. In direct mechanism the bacteria oxidize the sulphides minerals by accepting electron and producing sulphuric acid in leaching media for their growth and metabolism. In other hand the indirect bioleaching is demonstrated as the oxidation of sulphides mineral by the oxidant like $Fe^{3+}$ produced by the iron oxidizing bacteria. Through this process, substantial amount of metal can be recovered from low-grade ores, concentrates, industrial wastes like sludge, tailings, fly ash, slag, electronic scrap, spent batteries and spent catalysts. This may be alternative technology to solve the high deposition of waste, which moves toward a healthy environment and green world.

Biological Leaching of Cu, Al, Zn, Ni, Co, Sn and Pb from Waste Electronic Scrap using Thiobacillus Ferrooxidans (廢電子스크랩에서 Thiobacillus ferrooxidans를 이용한 Cu, Al, Zn, Ni, Co, Sn 및 Pb의 浸出)

  • Ahn, Jae-Woo;Kim, Myeong-Woon;Jeong, Jin-Ki;Lee, Jae-Chun;Kim, Dong-Gin;Ahn, Jong-Gwan
    • Resources Recycling
    • /
    • v.14 no.1
    • /
    • pp.17-25
    • /
    • 2005
  • In order to recover valuable metals from the waste electronic scrap, bioleaching of Cu, Zn, Al, Co, Ni, Sn and Pb was carried out using Thiobacillus ferrooxidans as a leaching microorganism in a shaking flask. In a preliminary study, to obtain the data on the leaching of Cu, Zn, Al, Co and Ni, the metal leaching was accomplished using metal powers instead of electronic scrap. The leaching percentaga of Cu, Zn, Co, Al and Ni powers was reduced with the increase of metal power concentration in solution. Below the metal concentration of 0.5 g/L, more than 85% of Cu, Co and Zn powers was leached out. At the electronic scrap concentration of 100 g/L, Thiobacillus ferrooxidans were able to leach more than 90% of the available Cu and Co while Al, Zn and Ni were able to leach less than 40%. Pb and Sn were not detected in the leachate. Pb was precipitated as PbSO$_4$, whereas Sn precipitated probably as SnO.