• Title/Summary/Keyword: Biogeochemistry

Search Result 69, Processing Time 0.039 seconds

Assessing the future extreme dry and wet conditions in East Asia using CMIP6-BGC (CMIP6-BGC 기반 동아시아 지역 극한 건조 및 습윤 상태 평가)

  • Jaehyeong Lee;Yeonjoo Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.411-411
    • /
    • 2023
  • 미래 대기 이산화탄소 농도가 증가함에 따라 강수 등 기후의 변화하고, 이는 유출량을 포함한 수문 순환 뿐 아니라 지면 식생 생장에 영향을 줄 것으로 예상된다. 이에 본 연구에서는 미래 CO2 증가에 따른 식생의 변화와 이로 인한 지표 유출량의 변화에 대해 이해하고자 한다. Intergovernmental Panel on Climate Change (IPCC) 6차 평가보고서에서 제시한 표준 온실가스 경로 중 탄소 모듈이 포함된 Coupled Model Intercomparison Project phase 6 biogeochemistry (CMIP6-BGC) 모델과 탄소 모듈이 포함안된 CMIP6 모델 결과를 활용하였다. 공통 사회경제경로 시나리오(Shared Socio-economic Pathway; SSP) 중 고탄소 시나리오인 SSP585에 따른 모델 결과물을 활용하였다. 표면 유출량 자료에 과거 기간 임계수준 방법을 (Threshold Level Method) 적용하여 동아시아 지역 극한 건조 및 습윤 상태의 빈도와 강도를 CMIP6-BGC와 CMIP6에 대해 평가하였다. CMIP6-BGC 경우, 건조 및 습윤 상태의 빈도는 각각 6.17%, 5.03% , CMIP6 경우 각각 9.29%, 6.70% 으로 예측되어, CMIP6-BGC가 CMIP6 보다 극한 상태를 과소평가하는 경향을 보였다. 또한, 잎 면적 지수(Leaf Area Index; LAI), 증산량 등의 변수를 분석하여, 기 도출된 CMIP6-BGC와 CMIP6 간의 극한 건조 및 습윤 상태 예측의 차이가 발생한 메카니즘을 이해하고자 하였다.

  • PDF

Analysis of the impact of the land surface resolution on soil moisture and fire simulation (지면 모델 격자 크기에 따른 토양수분과 화재 모의 영향 분석)

  • Hocheol Seo;Eunjee Lee;Randal D. Koster;Yeonjoo Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.69-69
    • /
    • 2023
  • 격자 기반의 지면모형을 구동하기에 앞서 사용자의 목적에 따른 모델의 정확도와 모델의 구동 시간의 적절한 균형을 이루는 지면 모델의 격자 크기의 설정은 중요하다. 특히, 격자 크기에 따라 화재 모의 결과 영향이 매우 클 수 있지만, 이에 관한 연구들을 거의 이루어지지 않았다. 화재 모의는 탄소 순환뿐만 아니라 물 순환에도 직접적인 영향을 미치기 때문에 이를 위한 적절한 격자 크기 설정은 중요하다. 본 연구에서는 지면모형인 NCAR Community Land Model version 5(CLM 5)-biogeochemistry (BGC) 모형과 2000년부터 2019년의 The Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) 기상자료 이용하여서 지면 모델 격자 크기(1.9°×2.5°, 0.47°×0.63°, 0.25°×0.25°)에 따른 전 지구 규모의 화재 시뮬레이션 결과들을 분석하였다. 연평균 화재면적은 격자 크기가 제일 큰 1.9°×2.5° 격자의 시뮬레이션에서 연평균 450M ha로 가장 작게 나타났으며 격자의 크기가 작아질수록 화재의 크기는 증가하는 것으로 나타났다. 지면 모델의 격자가 작아짐에 따라 토양 입자의 분포가 세분화되고 이에 따라 투수 계수값이 증가하며 높은 토양수분의 분포들을 줄어들고 낮은 토양수분의 분포는 증가함을 확인하였다. 토양수분이 줄어듦에 따라 화재 연소성 정도를 나타내는 변수의 값이 증가하고 이에 따라 화재 발생빈도 및 화재 확산이 증가하여 지면 모델의 화재면적을 더 증가시키는 요인이 됨을 확인하였다. 이 연구를 바탕으로 하여 화재 모의의 불확실성 요소를 이해하고, 격자 크기에 따라 화재 모의 관련 매개변수의 수정이 필요할 것으로 판단된다.

  • PDF

Impact of arctic fire on the water cycle using GFED datasets and Community Land Model (화재 자료와 CLM 모형의 융합을 통한 화재의 극지방 물순환 영향)

  • Seo, Hocheol;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.100-100
    • /
    • 2021
  • IPCC 5차 보고서에 따르면 지구 평균 기온상승은 저위도 보다 극지방에서 더욱 뚜렷하게 나타나며 이러한 기후변화는 극지 생태계의 변화를 초래한다. 이러한 기후변화에 따른 극지 생태계의 변화를 분석 및 예측하기 위하여 지면-생태계 모형을 구축하고 극지방 생태계, 수문 및 탄소 순환 등을 모의하는 연구들이 많이 진행되고 있다. 최근 극지 지역에서는 기후변화로 인하여 화재 발생 빈도가 증가하고 있으며, 이로 인하여 극지 생태계뿐 아니라 물순환에 많은 영향을 미치고 있다. 하지만 지면-생태계 모형안의 화재 시뮬레이션은 화재의 원인 파악의 부족, 입력자료의 부족, 화재 역학 이해의 부족 등의 한계가 존재한다. 본 연구에서는 2001~2012년 동안 위성에서 관측된 화재면적 자료인 Global Fire Emissions Database (GFED) v4 자료와 지면-생태계 모형인 NCAR Community Land Model (CLM)-biogeochemistry (BGC) 와의 실시간 융합을 통하여 기존 화재 시뮬레이션의 한계점을 보완하고자 하였다. 기존 CLM-BGC 모형을 통한 증발산량, 화재 자료-모형의 융합을 통한 증발산량 결과와 Moderate Resolution Imaging Spectroradiometer (MODIS) 증발산량 자료와의 비교를 통하여 증발산량 모의에 화재의 중요성을 분석하고자 한다. 또한, 유출량 뿐만 아니라 토양수분의 변화를 시·공간적 변화를 분석함으로써 화재가 극지방 물순환에 미치는 영향을 나타내었다. 또한, 본 연구를 통하여 미래 기후변화에 따른 극지방의 생태계 및 물순환을 모의하기 위하여 화재 시스템 구축의 중요성을 제시하였다.

  • PDF

Impact of assimilating the terrestrial water storage on the water and carbon cycles in CLM5-BGC

  • Chi, Heawon;Seo, Hocheol;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.204-204
    • /
    • 2021
  • Terrestrial water storage (TWS) includes all components of water (e.g., surface water, groundwater, snow and ice) over the land. So accurately predicting and estimating TWS is important in water resource management. Although many land surface models are used to predict the TWS, model output has errors and biases in comparison to the observation data due to the model deficiencies in the model structure, atmospheric forcing datasets, and parameters. In this study, Gravity Recovery And Climate Experiment (GRACE) satelite TWS data is assimilated in the Community Land Model version 5 with a biogeochemistry module (CLM5.0-BGC) over East Asia from 2003 to 2010 by employing the Ensemble Adjustment Kalman Filter (EAKF). Results showed that TWS over East Asia continued to decrease during the study period, and the ability to simulate the surface water storage, which is the component of the CLM derived TWS, was greatly improved. We further investigated the impact of assimilated TWS on the vegetated and carbon related variables, including the leaf area index and primary products of ecosystem. We also evaluated the simulated total ecosystem carbon and calculated its correlation with TWS. This study shows that how the better simulated TWS plays a role in capturing not only water but also carbon fluxes and states.

  • PDF

Mineralogy and Biogeochemistry of Intertidal Flat Sediment, Muan, Chonnam, Korea (전남 무안 갯벌 퇴적물에 관한 광물학적 및 생지화학적 연구)

  • Park, Byung-No;Lee, Je-Hyun;Oh, Jong-Min;Lee, Seuug-Hee;Han, Ji-Hee;Kim, Yu-Mi;Seo, Hyun-Hee;Roh, Yul
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.1 s.51
    • /
    • pp.47-60
    • /
    • 2007
  • While sedimentological researches on Western coastal tidal flats of Korea have been much pelformed previously, mineralogical and biogeochemical studies are beginning to be studied. The objectives of this study were to investigate mineralogical characteritics of the inter-tidal flat sediments and to explore phase transformation of iron(oxyhydr)oxides and biomineralization by metal-reducing bacteria enriched from the inter-tidal flat sediments from Muan, Jeollanam-do, Korea. Inter-tidal flat sediment samples were collected in Chungkye-myun and Haeje-myun, Muan-gun, Jeollanam-do. Particle size analyses were performed using the pipette method and sedimentation method. The separates including sand, silt and clay fractions were examined by scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), and X-ray diffiaction (XRD). After enriching the metal-.educing bacteria from the into,-tidal flat sediments, the bacteria were used to study phase transformation of the synthesized iron (oxyhydr)oxides and iron biomineralization using lactate or glucose as the electron donors and Fe(III)-containing iron oxides as the electron accepters. Mineralogical studies showed that the sediments of tidal flats in Chung]rye-myun and Haeje-myun consist of quartz, plagioclase, microcline, biotite, kaolinite and illite. Biogeochemical researches showed that the metal-reducing bacteria enriched from the inter-tidal flat sediments reduced reddish brown akaganeite and mineralized nanometer-sized black magnetite. The bacteria also reduced the reddish brown ferrihydrite into black amorphous phases and reduced the yellowish goethite into greenish with formation of nm-sized phases. These results indicate that microbial Fe(III) reduction may play one of important roles in iron and carbon biogeochemistry as well as iron biomineralization in subsurface environments.

Experimental Study on Temperature Dependence of Nitrate Sensing using an ISE-based On-site Water Monitoring System

  • Jung, Dae-Hyun;Kim, Dong-Wook;Cho, Woo Jae;Kim, Hak-Jin
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.122-122
    • /
    • 2017
  • Recently, environmental problems have become an area of growing interests. In-situ monitoring of water quality is fundamental to most environmental applications. The accurate measurement of nitrate concentrations is fundamental to understanding biogeochemistry in aquatic ecosystems. Several studies have reported that one of the most feasible methods to measure nitrate concentration is the use of Ion Selective-electrodes (ISEs). The ISE application to water monitoring has several advantages, such as direct measurement methodology, high sensitivity, wide measurement range, low cost, and portability. However, the ISE methods may yield inconsistent results where there was a difference in temperature between the calibration and measurement solutions, which is associated with the temperature dependence of ionic activity coefficients in solution. In this study, to investigate the potential of using the combination of a temperature sensor and nitrate ISEs for minimizing the effect of temperature on real-time nitrate sensing in natural water, a prototype of on-site water monitoring system was built, mainly consisting of a sensor chamber, an array of 3 ISEs, an waterproof temperature sensor, an automatic sampling system, and an arduino MCU board. The analog signals of ISEs were obtained using the second-order Sallen-key filter for performing voltage following, differential amplification, and low pass filtering. The performance test of the developed water nitrate sensing system was conducted in a monitoring station of drinking water located in Jeongseon, Kangwon. A temperature compensation method based on two-point normalization was proposed, which incorporated the determination of temperature coefficient values using regression equations relating solution temperature and electrode signal determined in our previous studies.

  • PDF

Isolation and Identification of Bacteria Involved with Biomineralization at B Mine Sludge in Mexico (멕시코 B 광산 슬러지에 존재하는 생물학적 광물화 미생물의 특성에 관한 연구)

  • Kim, Joon-Ha;Yun, Seong-Yeol;Park, Yoon Soo;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.2
    • /
    • pp.41-51
    • /
    • 2017
  • Microbial processes that bind heavy metals and form minerals are widespread, and they represent a basic aspect of biogeochemistry. Some microorganisms can crystallize minerals by secreting a specific enzyme. In particular, calcite ($CaCO_3$) precipitation is an important part of biomineralization, and has been studied extensively because of its wide application in civil engineering technology. This process provides an effective way to stabilize heavy metals within a relatively stable crystal phase. In this study, biomineralization of calcite by three urea-hydrolyzing indigenous bacterial strains was investigated by microbiological analyses. Three bacterial strains were isolated from the sludge of B mine in Mexico and each bacterial strain was identified by the cellular fatty acid composition and 16S rRNA partial sequencing analysis. The results of the identification analysis showed that these strains were closest to Sporosarcina pasteurii, Kurthia gibsonii, and Paenibacillus polymyxa. We found that the optimum conditions for growth of these indigenous bacteria were $30-40^{\circ}C$ and pH range of 7-8. Microbiological analyses showed the possibility that the bioaccumulated heavy metals ions were deposited around the cell as crystalline carbonate minerals under the optimum conditions. The findings of our study suggest that the indigenous bacterial strains play an important role in heavy metal immobilization.

Biogenic Particulate Matter Accumulation in Peter the Great Bay, East Sea (Japan Sea)

  • Hong, Gi-Hoon;Park, Sun-Kyu;Chung, Chang-Soo;Kim, Suk-Hyun;Tkalin, Alexander V.;Lishavskaya, Tatiana S.
    • Journal of the korean society of oceanography
    • /
    • v.31 no.3
    • /
    • pp.134-143
    • /
    • 1996
  • Sediment cores were collected from one site each in Amursky and Ussuriysky Bays in the Peter the great Bay for $^{210}Pb$, org C, N, biogenic Si, ${\delta}^{13}$C and ${\delta}^{15}$N analysis to elucidate the processes of biogenic particulate matter accumulation and early diagenetic change in the upper sediment column. Biogeochemistry at the core sites of both bays shows differences in sedimentation rate, sediment mixing, and diagenetic processes of particulate biogenic matter. Sedimentary organic matter at the core sites in both bays appeared to be largely derived from marine origin. Sedimentation rates are 173 and 118 mg $cm^{-2}$ $yr^{-1}$(0.13 and 0.11 cm $yr^{-1}$) in Amursky and Ussuriysky Bays, respectively. The surface mixed layer in the core top was present in Amursky Bay but not in Ussuriysky Bay. At the core site in Amursky Bay, incorporation of biogenic particulate matter into the sediment from the overlying waters is 236, 19, 142 mmol $cm^{-2}$ $yr^{-1}$ for organic C, N, and biogenic Si, respectively. Of which about 70${\%}$ of organic C and biogenic Si are degraded within the upper 25 cm sediment and the rest are buried at 25 cm sediment horizon. At the core site in Ussuriysky Bay, incorporation of biogenic particulate matter into the sediment from overlying waters is 164, 18, 76 mmol $cm^{-2}$ $yr^{-1}$ for organic C, N, and biogenic Si, respectively. Of which less than 50${\%}$ of organic C and biogenic Si are degraded within the upper 25 cm sediment and the remainder are buried at 25 cm sediment horizon. This large difference of degradation of biogenic matter in the upper 25 cm sediment column appears to be resulted from the difference in sediment mixing rates between the two cores.

  • PDF

A Study on the Biogeochemistry of the Sediments in the Han River Estuary (한강하구 퇴적물의 생지화학적 반응에 관한 연구)

  • Lim, Bo-Mi;Ki, Bo-Min;Choi, Jung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.10
    • /
    • pp.839-844
    • /
    • 2009
  • This research investigates the importance of the microbial metabolic pathways such as denitrification, iron reduction, and methanogenesis, in the degradation of organic matters of the sediments. There are statistically significant differences( P < 0.05) in the rates of denitrification, iron reduction, and methanogenesis according to the location: Site A has no plant, Site B is dominated by Scirpus, and Site C is dominated by Phragmites. Among them, Site C showed different methanogenesis rate depending on the sediments depth. The organic matter content increased from Site A to Site C. Site A had the smallest organic matter content whereas it showed the largest denitrification rate and iron reduction rate. Site C had the largest methanogenesis rate. Denitrification is the dominant pathways based on the assumption that anaerobic degradation of organic matter is mainly carried out through denitrification, iron reduction, and methanogenesis.

Change of Wetland Microbial Activities after Creation of Constructed Wetlands (인공습지 조성 후 습지미생물활성도 변화에 관한 연구)

  • Lee, Ja-Yeon;Kim, Bo-Ra;Park, So-Young;Sung, Ki-June
    • Journal of Environmental Science International
    • /
    • v.19 no.1
    • /
    • pp.17-26
    • /
    • 2010
  • To understand the initial changes in the microbial activities of wetland soil after construction, dehydrogenase activity (DHA) and denitrification potential (DNP) of soil from 1 natural wetland and 2 newly constructed wetlands were monitored. Soil samples were collected from the Daepyung marsh as a natural wetland, a treatment wetland in the West Nakdong River, and an experimental wetland in the Pukyong National University, Busan. The results showed that the DHA of the natural wetland soil was 6.1 times higher than that of the experimental wetland and similar to that of the treatment wetland 6 months after wetland construction (fall). Few differences were observed in the DNP between the soil samples from the natural wetland and 2 constructed wetlands four months after wetland construction (summer). However, 6 months after the construction (fall), the DNP of the soil samples from the natural wetland was 12.9 times and 1.8 times higher than that of the experimental wetland and the treatment wetland, respectively. These results suggested that the presence of organic matter as a carbon source in the wetland soil affects the DHA of wetland soil. Seasonal variation of wetland environment, acclimation time under anaerobic or anoxic wetland conditions, and the presence of carbon source also affect the DNP of the wetland soil. The results imply that the newly constructed wetland requires some period of time for having the better contaminant removal performance through biogeochemical processes. Therefore, those microbial activities and related indicators could be considered for wetland management such as operation and performance monitoring of wetlands.