• Title/Summary/Keyword: Biogeochemical effects

Search Result 28, Processing Time 0.021 seconds

Biophysical Effects Simulated by an Ocean General Circulation Model Coupled with a Biogeochemical Model in the Tropical Pacific

  • Park, Hyo-Jin;Moon, Byung-Kwon;Wie, Jieun;Kim, Ki-Young;Lee, Johan;Byun, Young-Hwa
    • Journal of the Korean earth science society
    • /
    • v.38 no.7
    • /
    • pp.469-480
    • /
    • 2017
  • Controversy has surrounded the potential impacts of phytoplankton on the tropical climate, since climate models produce diverse behaviors in terms of the equatorial mean state and El $Ni{\tilde{n}}o$-Southern Oscillation (ENSO) amplitude. We explored biophysical impacts on the tropical ocean temperature using an ocean general circulation model coupled to a biogeochemistry model in which chlorophyll can modify solar attenuation and in turn feed back to ocean physics. Compared with a control model run excluding biophysical processes, our model with biogeochemistry showed that subsurface chlorophyll concentrations led to an increase in sea surface temperature (particularly in the western Pacific) via horizontal accumulation of heat contents. In the central Pacific, however, a mild cold anomaly appeared, accompanying the strengthened westward currents. The magnitude and skewness of ENSO were also modulated by biophysical feedbacks resulting from the chlorophyll affecting El $Ni{\tilde{n}}o$ and La $Ni{\tilde{n}}a$ in an asymmetric way. That is, El $Ni{\tilde{n}}o$ conditions were intensified by the higher contribution of the second baroclinic mode to sea surface temperature anomalies, whereas La $Ni{\tilde{n}}a$ conditions were slightly weakened by the absorption of shortwave radiation by phytoplankton. In our model experiments, the intensification of El $Ni{\tilde{n}}o$ was more dominant than the dampening of La $Ni{\tilde{n}}a$, resulting in the amplification of ENSO and higher skewness.

A Modeling Approach: Effects of Wetland Plants on the Fate of Metal Species in the Sediments (퇴적물에서 금속 이온 거동에 미치는 습지 식물의 영향에 관한 모델 연구)

  • Choi, Jung Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.5
    • /
    • pp.603-610
    • /
    • 2008
  • A mathematical model was developed to understand how the presence of plants affects vertical profiles of electron acceptors, their reduced species, and trace metals in the wetland sediments. The model accounted for biodegradation of organic matter utilizing sequential electron acceptors and subsequent chemical reactions using stoichiometric relationship. These biogeochemical reactions were affected by the combined effects of oxygen release and evapotranspiration driven by wetland plants. The measured data showed that $SO_4{^{2-}}$ concentrations increased at the beginning of the growing season and then gradually decreased. Based on the measured data, it was hypothesized that the limitation of the solid phase sulfide in direct contact with the roots may result in the gradual decrease of $SO_4{^{2-}}$ concentrations. With the dynamic formulation for the limitation of the solid phase sulfide, model simulated time variable sulfate profiles using published model parameters. Oxygen release from roots produced divalent metal species (i.e. $Cd^{2+}$) as well as oxidized sulfur species (i.e. $SO_4{^{2-}}$) in the sediment pore water. Evapotranspiration-induced advection increased flux of divalent metal species from the overlying water column into the rhizosphere. The increased divalent metal species were converted to the metal sulfide with sufficient FeS around the rhizosphere, which contributed to the decrease of bioavailability and toxicity of divalent metal activity in the pore water. Since the divalent metal activity is a good predictor of the metal bioavailability, this model with a proper simulation of solid phase sulfide plays an essential role to predict the dynamics of trace metals in the wetland sediments.

Effects of Elevated Atmospheric $CO_2$ on Wetland Plants: A Review (대기중 이산화탄소 농도 증가가 습지 식물에 미치는 영향)

  • Kim, Seon-Young;Kang, Ho-Jeong
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.4 s.105
    • /
    • pp.391-402
    • /
    • 2003
  • Last 20 years have witnessed many studies dealing with effects of elevated $CO_2$ on terrestrial ecosystems. However, fewer efforts have been made to elucidate effects on wetland ecosystems, although they play a key role in global biogeochemical cycles. This review synthesizes published data to reveal effects of elevated $CO_2$ on wetland plants. In particular, we focused on the changes in primary production, community structures, evapotranspiration, and nutrients in plants. Many studies have reported increases in primary production in individual plants, but we could not conclude that this will lead to increases in carbon sequestration in wetland ecosystems. The reasons include transport of photosynthates into belowground parts, speciesspecific responses, interaction among different species, and limitation of other nutrients. However, elevated $CO_2$ increased transpiration rates in many wetland plants, suggesting substantial influences on water budgets of wetlands. In addition, similar to terrestrial ecosystems, elevated $CO_2$ increased C/N ratio of many plants, which may impede organic matter decomposition in the long term. However, further information on dynamics of belowground carbon supplied from wetland plants is warranted to assess effects of elevated $CO_2$ on wetland carbon cycle accurately.

Relationship between gross primary production and environmental variables during drought season in South Korea (가뭄 기간 총일차생산량과 환경 변수 간 상관관계 분석)

  • Park, Jongmin;Lee, Dalgeun;Park, Jinyi;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.10
    • /
    • pp.779-793
    • /
    • 2021
  • Water stress and environmental drivers are important factors to explain the variance of gross primary production (GPP). Environmental drivers are used to generate GPP in Moderate Resolution Imaging Spectroradiometer (MODIS) algorithm and process-based model. However, MODIS algorithm only consider the vapor pressure deficit (VPD) data while the process-based biogeochemical model also uses limited data to express water stress. We compared the relationship between environmental drivers and GPP from eddy covariance method, MODIS algorithm, and Community Land Model 4 (CLM 4) simulation in normal years and drought years. To consider water stress specifically, we used VPD and evaporative fraction (EF). We evaluated the effects from environmental drivers and EF towards GPP products using the structural equation modeling (SEM) in South Korea. We found that GPP products from MODIS algorithm and model simulation results were not restricted from VPD data if VPD was underestimated. We also found that in the cropland area, irrigation effects can relieve VPD effects to GPP. However, GPP products derived from MODIS and CLM 4 had limitation to explain the irrigation effects to GPP. Overall, these results will enhance the understanding of GPP products derived from MODIS and CLM 4.

ATMOSPHERIC CORRECTION TECHNIQUE FOR GEOSTATIONARY OCEAN COLOR IMAGER (GOCI) ON COMS

  • Shanmugam, Palanisamy;Ahn, Yu-Hwan
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.467-470
    • /
    • 2006
  • Geostationary Ocean Color Imager (GOCI) onboard its Communication Ocean and Meteorological Satellite (COMS) is scheduled for launch in 2008. GOCI includes the eight visible-to-near-infrared (NIR) bands, 0.5km pixel resolution, and a coverage region of 2500 ${\times}$ 2500km centered at 36N and 130E. GOCI has had the scope of its objectives broadened to understand the role of the oceans and ocean productivity in the climate system, biogeochemical variables, geological and biological response to physical dynamics and to detect and monitor toxic algal blooms of notable extension through observations of ocean color. To achieve these mission objectives, it is necessary to develop an atmospheric correction technique which is capable of delivering geophysical products, particularly for highly turbid coastal regions that are often dominated by strongly absorbing aerosols from the adjacent continental/desert areas. In this paper, we present a more realistic and cost-effective atmospheric correction method which takes into account the contribution of NIR radiances and include specialized models for strongly absorbing aerosols. This method was tested extensively on SeaWiFS ocean color imagery acquired over the Northwest Pacific waters. While the standard SeaWiFS atmospheric correction algorithm showed a pronounced overcorrection in the violet/blue or a complete failure in the presence of strongly absorbing aerosols (Asian dust or Yellow dust) over these regions, the new method was able to retrieve the water-leaving radiance and chlorophyll concentrations that were consistent with the in-situ observations. Such comparison demonstrated the efficiency of the new method in terms of removing the effects of highly absorbing aerosols and improving the accuracy of water-leaving radiance and chlorophyll retrievals with SeaWiFS imagery.

  • PDF

Quantifying Climate Regulation of Terrestrial Ecosystems Using a Land-Atmosphere Interaction Model Over East Asia for the Last Half Century

  • Hong, Seungbum;Jang, Inyoung;Jeong, Heon-Mo
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.1 no.1
    • /
    • pp.58-67
    • /
    • 2020
  • Terrestrial ecosystems influence climate change via their climate regulation function, which is manifested within the carbon, water, and energy circulation between the atmosphere and surface. However, it has been challenging to quantify the climate regulation of terrestrial ecosystems and identify its regional distribution, which provides useful information for establishing regional climate-mitigation plans as well as facilitates better understanding of the interactions between the climate and land processes. In this study, a land surface model (LSM) that represents the land-atmosphere interactions and plant phenological variations was introduced to assess the contributions of terrestrial ecosystems to atmospheric warming or cooling effects over East Asia over the last half century. Three main climate-regulating components were simulated: net radiation flux, carbon exchange, and moisture flux at the surface. Then, the contribution of each component to the atmospheric warming or cooling (negative or positive feedback to the atmosphere, respectively) was investigated. The results showed that the terrestrial ecosystem over the Siberian region has shown a relatively large increase in positive feedback due to the enhancement of biogeochemical processes, indicating an offset effect to delay global warming. Meanwhile, the Gobi Desert shows different regional variations: increase in positive feedback in its southern part but increase in negative one in its eastern part, which implies the eastward movements of desert areas. As such, even though the LSM has limitations, this model approach to quantify the climate regulation is useful to extract the relevant characteristics in its spatio-temporal variations.

A Study of Arctic Microbial Community Structure Response to Increased Temperature and Precipitation by Phospholipid Fatty Acid Analysis

  • Sungjin Nam;Ji Young Jung
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.4 no.2
    • /
    • pp.86-94
    • /
    • 2023
  • Climate change is more rapid in the Arctic than elsewhere in the world, and increased precipitation and warming are expected cause changes in biogeochemical processes due to altered microbial communities and activities. It is crucial to investigate microbial responses to climate change to understand changes in carbon and nitrogen dynamics. We investigated the effects of increased temperature and precipitation on microbial biomass and community structure in dry tundra using two depths of soil samples (organic and mineral layers) under four treatments (control, warming, increased precipitation, and warming with increased precipitation) during the growing season (June-September) in Cambridge Bay, Canada (69°N, 105°W). A phospholipid fatty acid (PLFA) analysis method was applied to detect active microorganisms and distinguish major functional groups (e.g., fungi and bacteria) with different roles in organic matter decomposition. The soil layers featured different biomass and community structure; ratios of fungal/bacterial and gram-positive/-negative bacteria were higher in the mineral layer, possibly connected to low substrate quality. Increased temperature and precipitation had no effect in either layer, possibly due to the relatively short treatment period (seven years) or the ecosystem type. Mostly, sampling times did not affect PLFAs in the organic layer, but June mineral soil samples showed higher contents of total PLFAs and PLFA biomarkers for bacteria and fungi than those in other months. Despite the lack of response found in this investigation, long-term monitoring of these communities should be maintained because of the slow response times of vegetation and other parameters in high-Arctic ecosystems.

Formation and Deformation of the Fluid Mud Layer on Riverbeds under the Influence of the Hydrological Property and Organic Matter Composition (하천 수문 특성과 유기물 성상 변화에 따른 하상 유동상 퇴적물 거동 연구)

  • Trung Tin Huynh;Jin Hur;Byung Joon Lee
    • Journal of Korean Society on Water Environment
    • /
    • v.40 no.2
    • /
    • pp.79-88
    • /
    • 2024
  • This study employed field measurements and biogeochemical analysis to examine the effects of seasonal conditions (e.g., temperature and precipitation) and human intervention (e.g., dam or weir construction) on the chemical composition of dissolved organic matter, flocculation kinetics of suspended particulate matter, and formation of the fluid mud layer on riverbeds. The results indicated that a water environment with a substantial amount of biopolymers offered favorable conditions for flocculation kinetics during an algal bloom period in summer; a thick fluid mud layer was found to be predominated with cohesive materials during this period. However, after high rainfall, a substantial influx of terrigenous humic substances led to enhanced stabilization of the particulate matter, thereby decreasing flocculation and deposition, and the reduced biopolymer composition served to weaken the erosion resistance of the fluid mud on the riverbed. Moreover, a high-turbulence condition disaggregated the flocs and the fluid mud layer and resuspended the suspended particulate matter in the water column. This study demonstrates the mutual relationship that exists between biogeochemistry, flocculation kinetics, and the formation of the fluid mud layer on the riverine area during different seasons and under varying hydrological conditions. These findings are expected to eventually help inform the more optimal management of water resources, which is an urgent task in the face of anthropogenic stressors and climate change.

Effects of streambed geomorphology on nitrous oxide flux are influenced by carbon availability (하상 미지형에 따른 N2O 발생량 변화 효과에 대한 탄소 가용성의 영향)

  • Ko, Jongmin;Kim, Youngsun;Ji, Un;Kang, Hojeong
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.11
    • /
    • pp.917-929
    • /
    • 2019
  • Denitrification in streams is of great importance because it is essential for amelioration of water quality and accurate estimation of $N_2O$ budgets. Denitrification is a major biological source or sink of $N_2O$, an important greenhouse gas, which is a multi-step respiratory process that converts nitrate ($NO_3{^-}$) to gaseous forms of nitrogen ($N_2$ or $N_2O$). In aquatic ecosystems, the complex interactions of water flooding condition, substrate supply, hydrodynamic and biogeochemical properties modulate the extent of multi-step reactions required for $N_2O$ flux. Although water flow in streambed and residence time affect reaction output, effects of a complex interaction of hydrodynamic, geomorphology and biogeochemical controls on the magnitude of denitrification in streams are still illusive. In this work, we built a two-dimensional water flow channel and measured $N_2O$ flux from channel sediment with different bed geomorphology by using static closed chambers. Two independent experiments were conducted with identical flume and geomorphology but sediment with differences in dissolved organic carbon (DOC). The experiment flume was a circulation channel through which the effluent flows back, and the size of it was $37m{\times}1.2m{\times}1m$. Five days before the experiment began, urea fertilizer (46% N) was added to sediment with the rate of $0.5kg\;N/m^2$. A sand dune (1 m length and 0.15 m height) was made at the middle of channel to simulate variations in microtopography. In high- DOC experiment, $N_2O$ flux increases in the direction of flow, while the highest flux ($14.6{\pm}8.40{\mu}g\;N_2O-N/m^2\;hr$) was measured in the slope on the back side of the sand dune. followed by decreases afterward. In contrast, low DOC sediment did not show the geomorphological variations. We found that even though topographic variation influenced $N_2O$ flux and chemical properties, this effect is highly constrained by carbon availability.

Importance of Polar Phytoplankton for the Global Environmental Change (전 지구 환경변화에 대한 극지 식물플랑크톤의 중요성)

  • 강성호;강재신;이상훈;김동선;김동엽
    • Korean Journal of Environmental Biology
    • /
    • v.18 no.1
    • /
    • pp.1-20
    • /
    • 2000
  • There are increasing evidences of climate change in the Antarctic and Arctic Oceans, especially elevated temperature due to the continuous burning of the fossil fuels and ultraviolet B(UV-B) flux within the ozone hole. Light-dependent, temperature-sensitive, and fast-growing organisms respond to these physical and biogeochemical changes. Polar marine phytoplankton, which are pioneer endemic species and important carbon contributors in the polar waters, are therefore highly suitable biological indicators of such changes. By virtue of light requirement, the primary producers are exposed to extreme seasonal fluctuations in temperature, photosynthetically active radiation, and UV radiation. Local environmental warming and increased UV-B radiation during ozone depletion may have profound effects on the primary producers that are primary carbon producers in the polar water. Small changes in climate temperature and solar radiation may have profound effects on the activity threshold of the polar phytoplanktion. To demonstrate biological response to the environmental changes, standardized representative natural and biological parameters are needed so that replicate samples (including controls) can be taken over extended periods of time. In this paper, we review general characteristics of polar phytoplankton, their environment, environmental changes in the polar waters, the effects on the environmental changes to the polar phytoplankton, and the importance of the polar phytoplankton to understand the global environmental changes. [Biological indicators, Global environmental change, Polar phytoplankton, UV].

  • PDF