• Title/Summary/Keyword: Biogas Production

Search Result 273, Processing Time 0.023 seconds

Study on the Heat Transfer Phenomenon around Underground Concrete Digesters for Bigas Production Systems (생물개스 발생시스템을 위한 지하매설콘크리트 다이제스터의 열전달에 관한 연구)

  • 김윤기;고재균
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.1
    • /
    • pp.53-66
    • /
    • 1980
  • The research work is concerned with the analytical and experimental studies on the heat transfer phenomenon around the underground concrete digester used for biogas production Systems. A mathematical and computational method was developed to estimate heat losses from underground cylindrical concrete digester used for biogas production systems. To test its feasibility and to evaluate thermal parameters of materials related, the method was applied to six physical model digesters. The cylindrical concrete digester was taken as a physical model, to which the model,atical model of heat balance can be applied. The mathematical model was transformed by means of finite element method and used to analyze temperature distribution with respect to several boundary conditions and design parameters. The design parameters of experimental digesters were selected as; three different sizes 40cm by 80cm, 80cm by 160cm and l00cm by 200cm in diameter and height; two different levels of insulation materials-plain concrete and vermiculite mixing in concrete; and two different types of installation-underground and half-exposed. In order to carry out a particular aim of this study, the liquid within the digester was substituted by water, and its temperature was controlled in five levels-35。 C, 30。 C, 25。 C, 20。C and 15。C; and the ambient air temperature and ground temperature were checked out of the system under natural winter climate conditions. The following results were drawn from the study. 1.The analytical method, by which the estimated values of temperature distribution around a cylindrical digester were obtained, was able to be generally accepted from the comparison of the estimated values with the measured. However, the difference between the estimated and measured temperature had a trend to be considerably increased when the ambient temperature was relatively low. This was mainly related variations of input parameters including the thermal conductivity of soil, applied to the numerical analysis. Consequently, the improvement of these input data for the simulated operation of the numerical analysis is expected as an approach to obtain better refined estimation. 2.The difference between estimated and measured heat losses was shown to have the similar trend to that of temperature distribution discussed above. 3.It was found that a map of isothermal lines drawn from the estimated temperature distribution was very useful for a general observation of the direction and rate of heat transfer within the boundary. From this analysis, it was interpreted that most of heat losses is passed through the triangular section bounded within 45 degrees toward the wall at the bottom edge of the digesten Therefore, any effective insulation should be considered within this region. 4.It was verified by experiment that heat loss per unit volume of liquid was reduced as the size of the digester became larger For instance, at the liquid temperature of 35˚ C, the heat loss per unit volume from the 0. 1m$^3$ digester was 1, 050 Kcal/hr m$^3$, while at for 1. 57m$^3$ digester was 150 Kcal/hr m$^3$. 5.In the light of insulation, the vermiculite concrete was consistently shown to be superior to the plain concrete. At the liquid temperature ranging from 15。 C to 350 C, the reduction of heat loss was ranged from 5% to 25% for the half-exposed digester, while from 10% to 28% for the fully underground digester. 6.In the comparison of heat loss between the half-exposed and underground digesters, the heat loss from the former was fr6m 1,6 to 2, 6 times as much as that from the latter. This leads to the evidence that the underground digester takes advantage of heat conservation during winter.

  • PDF

Effects of silage storage period of grass clippings on methane production by anaerobic digestion (잔디 예지물의 혐기소화에서 사일리지 저장기간이 메탄 생산에 미치는 영향)

  • Jin Yeo;Tae-Hee Kim;Chang-Gyu Kim;Seo-Yeong Lee;Young-Man Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.4
    • /
    • pp.13-28
    • /
    • 2023
  • This study assessed the biochemical methane potential (Bu-P) of three grass species-Poa pratensis (PP), Zoysia japonica (ZJ), and Agrostis stolonifera (AS). Bu-P values were determined as 0.330 Nm3/kg-VSadded for PP, 0.297 Nm3/kg-VSadded for ZJ, and 0.261 Nm3/kg-VSadded for AS. Notably, PP exhibited superior suitability for methane production. The investigation also examined the impact of silage storage duration on PP grass clippings, revealing a 19% decline in Bu-P from an initial value of 0.269 Nm3/kg-VSadded on day 0 to 0.217 Nm3/kg-VSadded on day 180. Throughout the storage period, there were significant increases in neutral detergent fiber (NDF), acid detergent fiber (ADF), and crude protein (CP) contents, rising from 67.59%, 39.68%, and 3.02% on day 0 to 77.12%, 54.65%, and 6.24% on day 180, respectively. These findings highlight the influence of storage duration on the anaerobic digestibility of PP grass clippings. To effectively utilize grass clippings as a renewable resource for methane production, further studies considering factors such as initial moisture content, pretreatment methods, and potential effects of residual pesticides are necessary to optimize anaerobic digestion efficiency for herbaceous biomass.

Biochemical Methane Potential Analysis of Mushroom Waste Medium (버섯 폐배지의 생화학적 메탄퍼텐셜 분석)

  • Kim, Chang-Gyu;Lee, Jun-Hyeong;Yoon, Young-Man
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.1
    • /
    • pp.13-21
    • /
    • 2022
  • Mushroom waste medium refers to the waste biomass generated after mushroom cultivating. And, the burden of treatment on mushroom farmhouse is increasing due to the absence of appropriate treatment method and increase of treatment costs of the mushroom waste medium. In this study, in order to assess the energy value of mushroom waste medium by an anaerobic digestion, methane potential and anaerobic organic matter decomposition characteristics were investigated. The theoretical methane potential(Bth) of mushroom medium(MM) was 0.481 Nm3-CH4/kg-VSadded, and the Bth of mushroom waste medium(MWM) was 0.451 Nm3-CH4/kg-VSadded. The biochemical methane potential(Bu-exp) of MWM was increased by 18% from 0.155 for MM to 0.183 Nm3-CH4/kg-VSadded for MWM. In the reaction kinetics analysis by the Modified Gompertz model, the maximum methane production rate(Rm) was increased from 4.59 for MM to 7.21 mL/day for MWM and the lag growth phase time(λ) was decreased from 2.78 for MM to 1.96 days for MWM. In the reaction kinetics analysis by the parallel first order kinetics model, the easily degradable organic matter(VSe) content was increased by 5.89% and the persistently degradable organic matter(VSp) content was 2.03% in MWM, and the non-degradable organic matter(VSNB) content was decreased by 7.85%. Therefore, it was evaluated that the anaerobic digestion efficiency of MWM was increased. The anaerobic digestion efficiency of MWM was assessed to be more improved than that of MM.

Molecular Analysis of the Microorganisms in a Thermophilic CSTR used for Continuous Biohydrogen Production (연속수소생성에 사용되는 고온 CSTR 내의 미생물의 분자적 분석)

  • Oh, You-Kwan;Park, Sung-Hoon;Ahn, Yeong-Hee
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.431-437
    • /
    • 2005
  • Molecular methods were employed to investigate microorganisms in a thermophilic continuous stirred tank reactor(CSTR) used for continuous $H_2$ production. The reactor was inoculated with heat-treated anaerobic sludge and fed with a glucose-based medium. Denaturing gradient gel electrophoresis showed dynamic changes of bacterial populations in the reactor during 43 days of operation. Gas composition was constant from approximately 14 days but population shift still occurred. Populations affiliated with Fervidobactrium gondwanens and Thermoanaerobacterium thermosaccharolyticum were dominant on 21 and 41 days, respectively. Keeping pH of the medium at 5.0 could suppress methanogenic activity that was detected during initial operation period. $CH_4$ and mcrA detected in the samples obtained from the reactor or inoculum suggested the heat treatment condition employed in this study is not enough to remove methanogens in the inoculum. PCR using primer sets specific to 4 main orders of methanogens suggested that major $H_2$-consuming methanogens in the CSTR belong to the order Methanobacteriales.

Biochemical Methane Potential Analysis for Anaerobic Digestion of Marine Algae (해조류의 혐기소화를 위한 메탄생산퍼텐셜 분석)

  • Lee, Jun-Hyeong;Kim, Tae-Bong;Shin, Kook-Sik;Yoon, Young-Man
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.4
    • /
    • pp.23-33
    • /
    • 2020
  • Marine algae(Macro algae) are easily bio-degradable, and by-products are available as feed and fertilizer. The biomass of marine algae has higher CO2 absorption capacity than the wood system, and is highly valuable in use due to its fast growth speed and wide cultivation area without special cost for raw material production. In 2018, Marine algae production was 1,722,486ton, such as Saccharina japonica, Undaria pinnatifida and Porphyra tenera, the large amounts of by-products have been generated in the food processing facilities for commercialization. In this study, Saccharina japonica, Undaria pinnatifida were collected in the south coast region and Porphyra tenera was collected in the west coast region. The theoretical methane potential and biochemical methane potential(BMP) were analyzed, and Modified Gompertz model and Parallel first order kinetics model were adopted for the interpretation of the cumulative methane production curves. The theoretical methane potential of Saccharina japonica, Undaria pinnatifida and Porphyra tenera were 0.393, 0.373 and 0.435 N㎥/kg-VS, respectively. BMP obtained by the Modified gompertz model 0.226, 0.227, and 0.241 N㎥/kg-VS for Saccharina japonica, Undaria pinnatifida and Porphyra tenera, respectively. And BMP obtained by the Parallel first order kinetics model were 0.220, 0.243, and 0.240 N㎥/kg-VS for Saccharina japonica, Undaria pinnatifida and Porphyra tenera, respectively.

Recovery of High-Purity Methane from Piggery Wastewater in the Phase-Separated Anaerobic Process (상분리 혐기성공정에 의한 양돈폐수로부터 고순도 메탄회수)

  • Jung, Jin-Young;Chung, Yun-Chul;Yoo, Chang-Bong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.210-213
    • /
    • 2008
  • The purpose of this study is to investigate the performances of organic removal and methane recovery in the full scale two-phase anaerobic system. The full scale two-phase anaerobic system was consists of an acidogenic ABR (Anaerobic Baffled Reactor) and a methanognic UASB (Upflow Anaerobic Sludge Blanket) reactor. The volume of acidogenic and methanogenic reactors is designed to 28.3 $m^3$ and 75.3 $m^3$. The two-phase anaerobic system represented 60-82% of COD removal efficiency when the influent COD concentration was in the range of 7,150 to 16,270 mg/L after screening (average concentration is 10,280 mg/L). After steady-state, the effluent COD concentration in the methanogenic reactor showed 2,740 $\pm$ 330 mg/L by representing average COD removal efficiency was 71.4 $\pm$ 8.1% when the operating temperature was in the range of 19-32$^{\circ}C$. The effluent SCOD concentration was in the range of 2,000-3,000 mg/L at the steady state while the volatile fatty concentration was not detected in the effluent. Meanwhile, the COD removal efficiency in the acidogenic reactor showed less than 5%. The acidogenic reactor played key roles to reduce a shock-loading when periodic shock loading was applied and to acidify influent organics. Due to the high concentration of alkalinity and high pH in the effluent of the methanogenic reactor, over 80% of methane in the biogas was produced consistently. More than 70 % of methane was recovered from theoretical methane production of TCOD removed in this research. The produced gas can be directly used as a heat source to increase the reactor temperature.

  • PDF

Characteristics of Food Waste Leachate Treatment in Thermophilic two Stage Anaerobic Digestion Combined UF Membrane (막결합형 고온 이상 혐기성 소화공정에서 음폐수 처리 특성)

  • Kim, Young-O;Jun, Duk-Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.3
    • /
    • pp.21-24
    • /
    • 2012
  • In this study, Anaerobic Membrane Bioreactor(AnMBR) treating food waste leachate was operated to investigate treatment efficiency of anaerobic process, operational parameters and production of biogas. AnMBR was operated under the condition of filtration type of inside-out mode. AnMBR was operated under the condition that range of permeate flux was from 15 to 20 LMH and range of transmembrane pressure was from 1 to $3 kgf/cm^2$. It was not good that AnMBR was performed under direct connection between anaerobic reactor and external UF module. so, this connection method changed to indirect connection using buffer tank was placed between anaerobic reactor and UF external module. TCOD and SCOD values were that influent were about 113 g/L, 62 g/L and effluent were 25 g/L, 12 g/L, respectively. also TCOD and SCOD removal efficiency were 77% and 81%, respectively. but after added UF process, COD and SCOD removal efficiency was increased to 93% and 86%, respectively.

Estimation of the methane generation rate constant using a large-scale respirometer at a landfill site

  • Park, Jin-Kyu;Tameda, Kazuo;Higuchi, Sotaro;Lee, Nam-Hoon
    • Environmental Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.339-346
    • /
    • 2017
  • The objective of this study is the evaluation of the performance of a large-scale respirometer (LSR) of 17.7 L in the determination of the methane generation rate constant (k) values. To achieve this objective, a comparison between anaerobic (GB21) and LSR tests was conducted. The data were modeled using a linear function, and the resulting correlation coefficient ($R^2$) of the linear regression is 0.91. This result shows that despite the aerobic conditions, the biodegradability values that were obtained from the LSR test produced results that are similar to those from the GB21 test. In this respect, the LSR test can be an indicator of the anaerobic biodegradability for landfill waste. In addition, the results show the high repeatability of the tests with an average coefficient of variance (CV) that is lower than 10%; furthermore, the CV for the LSR is lower than that of the GB21, which indicates that the LSR-test method could provide a better representation of waste samples. Therefore, the LSR method allows for both the prediction of the long-term biodegradation potential in a shorter length of time and the reduction of the sampling errors that are caused by the heterogeneity of waste samples. The k values are $0.156y^{-1}$ and $0.127y^{-1}$ for the cumulative biogas production (GB21) and the cumulative oxygen uptake for the LSR, respectively.

Study on the Public Food Waste Recycling Facility Operation (I) - Focusing on the Current State of Operation and the Problems - (음식물류폐기물 공공 자원화시설 운영에 관한 연구 (I) - 운영현황과 문제점을 중심으로 -)

  • Hong, Yong-Pyo;Kim, Hye-Sun;Kim, Ung-Yong;Shin, Hyun-Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.1
    • /
    • pp.41-49
    • /
    • 2016
  • This study is conducted to find out problems of the public food waste recycling facility and its improvement. Through a research on the actual condition, it is possible to analyze the problem of operation. Moreover, for this improvement, with analysis of the current state of recycling rate including its generation and the problem that can be shown from the real operation of the public/private food waste recycling facility, the results are as follows: It can be shown that the current amount of domestic food waste resource recycling is about 97 %. Almost every public recycling facility is analyzed to be economically infeasible and is not for recovery but to simple disposal. Especially, most of Biogas facilities appeared that amount of production and demand is not appropriate differed from enforcement design.

Function of Microbial Electrochemical Technology in Anaerobic Digestion using Sewage Sludge (하수슬러지를 이용한 혐기성소화조에서 미생물 전기화학기술의 역할)

  • Tian, Dongjie;Lee, Beom;Park, Jungye;Jun, Hangbae
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.3
    • /
    • pp.297-302
    • /
    • 2016
  • Microbial electrochemical technology (MET) has recently been studied to improve the efficiency of a traditional anaerobic digestion (AD). The purpose of this study was to investigate the impact of MET in the system when MET was combined with traditional AD (i.e., AD-MET). Electrodes used in the MET were Cu coated graphite electrodes. They were supplied with a voltage of 0.3 V. AD started to generate methane in 80 days. But AD-MET started to generate methane from the initial operation after the system started. It was observed that AD-MET reached steady state faster and produced higher methane yield than AD. During the steady state, the average daily methane productions in AD and AD-MET were 2.3L/d and 4.9L/d, respectively. Methane yields were 0.07-CH4/g‧CODre in AD and 0.25L-CH4/g‧CODre in AD-MET. In AD-MET, the production rates of total volatile fatty acids (TVFAs) and soluble chemical oxygen demand (SCOD) were 0.12 mg TVFAs/mg VS‧d and 0.35 mg SCOD/mg VS‧d, respectively. They were significantly (p < 0.05) higher than those in AD. However, the concentrations of residual TVFAs in both systems were not significantly (p > 0.05) different from each other, confirming that methane conversion in AD-MET was greater than that in AD.