• Title/Summary/Keyword: Biofilter Media

Search Result 98, Processing Time 0.021 seconds

Review on the Removal of Benzene and Ethylene by a Biofilter (바이오 필터에 의한 벤젠과 에틸렌 처리실험에 대한 고찰)

  • 김종오;이우범
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.3
    • /
    • pp.325-331
    • /
    • 2003
  • A biofilter study was conducted by changing inlet concentration and residence time for the removal of gaseous benzene and ethylene. In addition, carbon dioxide produced from the biofilters was investigated. Over 96% of benzene was removed at the residence times of 2 and 4.3 min, and inlet benzene concentrations of 220∼300 ppm. The ethylene biofilter was capable of achieving ethylene removal efficiency as much as 100% at a residence time of 14 min, and inlet concentrations of 99∼290 ppm. At a steady state, the carbon dioxide of 409∼611 ppm was produced with an ethylene inlet concentration of 290 ppm. Most of benzene and ethylene were degraded at lower part of the biofilters where more microbial activity occurred.

Performance of Three Different Biofilter Media in Laboratory-Scale Recirculating Systems for Red Seabream Pagrus major Culture

  • Harwanto, Dicky;Oh, Sung-Yong;Park, Heung-Sik;Jo, Jae-Yoon
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.4
    • /
    • pp.371-378
    • /
    • 2011
  • Juvenile red seabream (mean body weight 29.0 g) were reared in recirculating culture systems with three different biofilter media, sand (SF), polystyrene microbeads (PF), and Kaldnes beads (KF). The efficiencies of the three different biofilter media were also tested. The SF was fluidized, and the PF and KF were trickled. All treatments were duplicated. The volumetric removal rates of total ammonia nitrogen by SF, PF, and KF were 193.8, 183.9, and 142.6 g $m^{-3}day^{-1}$, respectively, and those of nitrite nitrogen ($NO_2$-N) were 113.4, 105.9, and 85.8 g $m^{-3}day^{-1}$, respectively. The TAN and $NO_2$-N removal rates of KF were lower than those of SF and PF (P < 0.05), but there was no significant difference in these rates between SF and PF (P > 0.05). Among the biofilters used, only KF showed total suspended solid (TSS) removal capacity. The TSS removal efficiencies of SF and PF were negative. The growth rates of fish in SF were significantly higher than those in KF but not higher than those in PF. There was no difference in growth rate between fish in PF and KF. The specific growth rate and feed conversion efficiency of red seabreams in KF were lower than those in SF and PF, but there were no significant differences between SF and PF. These results indicate that sand and polystyrene microbeads are recommended for red seabream culture in a recirculating system.

Advanced Wastewater Treatment Using Biofilter System with Floating Media under Alternative Flow (유로변경식 부상여재 생물여과시스템을 이용한 하수고도처리)

  • Ryu, Hong-Duck;Lee, Jeong-Hun;Lee, Sang-Ill
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.250-257
    • /
    • 2006
  • The objective of this study is to propose an alternative process for the small sewage treatment plants in rural communities. A biofilter has been used for biological wastewater treatment, which is becoming the alternative to the conventional activated sludge system. The proposed process used in this study, which is packed with floating media (i.e. expanded polystylene), has advantages of biofilter system and alternative flow system and they are incorporated into one process. Pilot and bench scale studies were performed using domestic wastewater. In the results of pilot plant study, it was observed that the stable effluent water quality was achieved and it met the present effluent criteria of suspended solid (SS), organic matters, T-N and T-P. In the study for determination of the cycle of backwashing, it was observed that the cycle of backwashing depended on BOD loading rates of influents. In the BOD loading rates of $0.5kg\;BOD/m^3{\cdot}day$ and $1.0kg\;BOD/m^3{\cdot}day$, the backwashing cycle of 28 hour and 16 hour were needed, respectively. The optimum backwashing time was 120~80 seconds at the media expansion rate of 50%. In the removal of SS, organic matters, T-N and T-P, SS removal was rather achieved by physical filtration than biological mechanism and the removal of organic matters except for SS, T-N and T-P were mainly rather achieved by biological mechanism than physical filtration. In bench-scale study, the effects of recirculation rate was investigated on removal of SS, TCOD, T-N and T-P. It was observed that the recirculation made removal efficiencies of SS, TCOD, T-N and T-P increased. Especially, in T-N removal, the increase of T-N removal efficiency of 40% was observed in the reicirculation rate of 1Q compared with 0Q.

Removal Characteristics of Toluene in Biofilters Packed with Reticulated-PU-Foams of Different Porosities (서로 다른 공극률의 망상형 폴리우레탄들이 충전된 바이오필터에서 톨루엔 제거 특성)

  • 명성운;남윤수;이용우;최호석
    • KSBB Journal
    • /
    • v.18 no.6
    • /
    • pp.448-454
    • /
    • 2003
  • We studied on the removal of toluene vapors in a lab-scale biofilter. There are three biofilters packed with reticulated polyurethane foams of different porosities of 15, 25, 45 PPI (Pore Per Inch) as media. A toluene-degrading strain (Pseudomonas Putida KCCM 11348, ATCC 12633) was naturally immobilized on the filter media by circulating the culture media. Three biofilters were operated under different sets of continuous experiments, varying both the design and operation parameters such as the inlet toluene concentration and the flow rate. Maximum elimination capacity of 115.5g/㎥hr of biofilter packed with foams of 25 PPI was obtained for toluene degradation. The effect of operating conditions such as flow rate, inlet toluene concentration and porosity on the performance of the biofilter was investigated.

Nitrification Efficiency in Fixed Film Biofilters using Different Filter Media in Simulated Seawater Aquarium System

  • Peng, Lei;Jo, Jae-Yoon
    • Journal of Aquaculture
    • /
    • v.16 no.4
    • /
    • pp.203-209
    • /
    • 2003
  • Nitrification efficiency of fixed film biofilters with sand, loess bead, and styrofoam bead in biofilter columns of 1-m height and 30 cm width was studied. Synthetic wastewater was continuously supplied to the culture tank to maintain total ammonia nitrogen (TAN) concentration in the inflow water at around 8 mg/L. The hydraulic loading rate was set at 200 ㎥/$m^2$/day. TAN conversion was stabilized after about 90 day conditioning for all the selected filter media but with net accumulations of nitrite. On the volumetric basis, conversion rates of TAN and nitrite were the highest in styrofoam bead filter. Mean volumetric TAN conversion rates in the final samples were 682, 269, and 79 g TAN/㎥/day in the styrofoam bead, sand and loess bead filters, respectively. Low gravity and cost of styrofoam bead render the handling easier and more cost-effective.

The Effect of Filter Media on the Biofiltration of Air Contaminated by Toluene (톨루엔으로 오염된 공기의 생물학적 여과에 대한 필터용 담체의 영향)

  • 홍성도;한희동;명성운;최호석;김인호
    • KSBB Journal
    • /
    • v.16 no.6
    • /
    • pp.603-608
    • /
    • 2001
  • In this study, we studied on the remeval of toluene vapors in a lab-scale biofilter. Biofiltration was performed in a column fed downflow with contaminated air at ambient conditions. The column was packed with mixture of Peat and Calstene(5:3 vol. Ratio), Synthesized media, Bark and Wood chip, which were inoculated with microbial population of selected stains(Pseudomonas. putida, KCCM 11343, ATCC 12633). The microorganisms were immobilized on the bed medium and then biofilm were formed. The biofilter was operated under the conditions of various inlet toluene concentrations for 180 days and treated up to the elimination capacity of maximum 40 g/㎥hr at the inlet load of 30 g/㎥ hr with percentage removals of 20∼90% and gas retention times between 1 and 2 min. The pressure drop was very negligible through the biofilter columps because its value of 0.054 cmH$_2$O/m was much less than others. The effect of operating conditions such as flow rate, inlet toluene concentration and moisture contents on the performance of the biofilter was sequentially investigated in this study.

  • PDF

Examine the Proper Operating Conditions in the Seawater Fluidized Bed filter System (해수 유동층 여과시스템의 적정 운용 조건)

  • Son Maeng-Hyun;Cho Kee-Chae;Jeon Im-Gi;Lim Han Kyu;Park Min-Woo
    • Journal of Aquaculture
    • /
    • v.18 no.4
    • /
    • pp.280-286
    • /
    • 2005
  • Experiments were conducted to examine the differences in ammonia removal rates with the different filter media between sand and zeolite, the expanding rates between $50\%$ and $100\%$, the water temperatures between $15^{\circ}C$ and $25^{\circ}C$, and the ammonia loading rates between 2 mg/L and 5 mg/L in the seawater fluidized bed filters system (FBF). The 2.1 m high FBF (8.3 cm diameter) consisted of the clear acrylic for the upper half and a PVC pipe for the lower half, Sand and zeolite were used as the filter media in sizes of 0.5$\pm$0.1mm. Each biofilter contained 5.4 L of media. The ammonia removal rates of the biofilter were higher at the $25^{\circ}C$ water temperature than those of the biofilter at $15^{\circ}C$ water temperature, and higher at the $50\%$ expanding rate of filter media than those of the biofilter at $100\%$ expanding rate of filter media. Also, the ammonia removal rates of FBF were higher at 5 mg/L ammonia concentration than those of FBF at 2 mg/L ammonia concentration in rearing water. With these better conditions the ammonia removal rates of FBF per day are practically acceptable and ranged ken 80.6 to $210.6g/m^3$.

Evaluation of Adsorption Characteristics of the Media for Biofilter Design (바이오필터설계를 위한 바이오필터 담체의 흡착 특성)

  • Lee, Eun-Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.994-1001
    • /
    • 2008
  • Freundlich isothermal adsorption parameters, applicable to such biofilter-model as process-lumping model(Lim's model), for sterilized granular activated carbon(GAC), sterilized compost and sterilized equal volume mixture of GAC and compost were obtained and were compared each other, assuming that adsorbents are enclosed by water layer, in order to construct robust process-lumping biofilter model effective for wide-range of hydrophilic volatile organic compounds(VOC). In this investigation 0.04, 0.08, 0.12, 0.16, 0.2, 0.4, 0.8 and 1.0ml of ethanol were added to three kinds of adsorbent-media and were placed at $30^{\circ}{\cdots}$ under the wet condition of the media, which was the same as biofilter operating condition, until the adsorption reached the condition of equilibrium before each adsorbed amount of ethanol was obtained. Then adsorption capacity parameters(K) and adsorption exponents of Freundlich adsorption isotherm equation, which simulates the adsorbed amount of ethanol equilibrated with the ethanol concentration of the condensed water in the pore of the media, were constructed for sterilized granular activated carbon(GAC), sterilized compost and sterilized equal volume mixture of GAC and compost as (0.7566 and $5.070{\times}10^{-7}mg-ethanol/mgmedia/(mg-ethanol/m^3)^{0.7566}$), (0.8827 and $1.000{\times}10^{-8}mg-ethanol/mgmedia/(mg-ethanol/m^3)^{0.8827}$) and (0.5688 and $5.243{\times}10^{-6}mg-ethanol/mgmedia/(mg-ethanol/m^3)^{0.5688}$), respectively. These Freundlich isothermal adsorption parameters were applicable to the adsorption characteristics of biofilter media enclosed with bio-layer. The order of magnitude of the ratio of ethanol-air/water partition coefficient and toluene-air/water partition coefficient was almost consistent to that of ethanol-adsorbed amounts in this experiment with compost and in the investigation of Delhomenie et al. on toluene-adsorption to wet compost.