• 제목/요약/키워드: Biofilm inhibition

검색결과 91건 처리시간 0.026초

회화나무 부위별 추출물의 항산화 및 항균활성 (Antioxidant and Antibacterial Activities of Extracts from Different Parts of Sophora japonica L.)

  • 박민정;김혜수;김한비;이상균;조수정
    • 생명과학회지
    • /
    • 제32권10호
    • /
    • pp.792-802
    • /
    • 2022
  • 본 연구에서는 천연물유래 기능성 식의약품 소재로써 회화나무의 이용 가능성을 알아보기 위해 회화나무 꽃(괴화), 열매(괴각), 가지(괴지)를 에탄올에 추출한 다음 회화나무 부위별 추출물의 항산화 활성과 항균활성을 조사하였다. 항산화 활성을 측정한 결과, 총 폴리페놀과 플라보노이드 함량은 괴각, 괴지에 비해 괴화 추출물에서 유의적으로 높게 나타났지만, ABTS 라디칼 소거능과 DPPH 라디칼 소거능, ORAC 지수는 괴지 추출물에서 높게 나타났다. 회화나무 추출물 중 괴지 추출물이 P. gingivalis에 대해 가장 우수한 항균활성을 나타내었으며, MIC는 0.2 mg/ml이였다. 또한, 괴지 추출물은 0.4 mg/ml 이하의 농도에서는 P. gingivalis에 대해 정균작용을 나타내었고, 0.6 mg/ml 이상의 농도에서는 살균작용을 나타내었다. 괴지 추출물(0.2-2.0 mg/ml)이 처리된 배양액에서 P. gingivalis KCTC5352의 바이오필름 형성과 세균 생육은 추출물의 농도가 증가할수록 농도의존적으로 억제되는 경향을 나타내었고, 섬모 관련 유전자인 fimA와 mfa1의 mRNA 발현도 괴지 추출물의 농도가 증가할수록 감소되는 것을 확인할 수 있었다. 이상의 결과를 종합하면, 회화나무 추출물 중 괴지 추출물은 항산화 활성이 높고, P. gingivalis에 대해 낮은 농도에서는 정균작용을 하고, 높은 농도에서는 살균작용을 하는 항균 소재일 뿐만 아니라 P. gingivalis의 섬모 유전자 발현을 억제함으로써 초기 치면세균막 형성을 억제할 수도 있기 때문에 기능성 식의약품소재로서 개발 가능성이 높다고 판단된다.

합성된 쿼럼 신호 유사 물질에 의한 녹농균 쿼럼 센싱 및 생물막 형성의 제어 (Inhibition of Quorum Sensing and Biofilm Formation by Synthetic Quorum Signal Analogues in Pseudomonas aeruginosa)

  • 김수경;김철진;윤제용;이준희
    • 한국미생물·생명공학회지
    • /
    • 제39권1호
    • /
    • pp.29-36
    • /
    • 2011
  • 그람음성 간균인 녹농균(Pseudomonas aeruginosa)은 비뇨기, 각막, 호흡기, 화상부위 등에 광범위하게 감염하는 기회감염성 병원균으로, 병원성의 발현에 세균의 세포밀도 인식 기전인 쿼럼 센싱(quorum sensing)이 매우 중요하게 관여한다. 사전 연구에서 녹농균 감염력을 제어하기 위한 방법으로 쿼럼 센싱의 주 신호물질인 N-3-oxododecanoyl-HSL(3OC12-HSL)의 분자 구조가 변형된 물질들을 합성하여 쿼럼 센싱 억제물질로 사용하고자 하였으며, 그 중 두 개의 물질들(5b, 5f)이 대장균을 이용한 스크리닝을 통해 녹농균의 주요 쿼럼 센싱 수용체 단백질인 LasR의 활성을 억제할 수 있음을 확인하였었다. 본 연구에서는 이 물질들의 효과를 보다 면밀히 분석하기 위하여 실제 녹농균에서 이 물질들이 쿼럼 센싱과 병독성을 억제할 수 있는지 분석해 보았다. 대장균을 이용한 리포터 분석에서와는 달리, 5b와 5f 모두 녹농균에서 직접 처리하였을 때는 LasR의 활성에 영향을 주지 못하였다. 대신 이 물질들은 녹농균의 또다른 쿼럼 센싱 수용체 단백질인 QscR의 활성에 선택적으로 영향을 주었다. 흥미롭게도 이 물질들의 효과는 대장균에서 얻어진 결과와는 달랐으며 다소 복잡하였다. 두 물질 모두 낮은 농도 범위(<10 ${\mu}m$)에서 QscR의 활성을 증가시켰으며, 높은 농도의 5f(${\approx}$1 mM)는 QscR을 강하게 억제하였다. 두 물질 모두 중요한 병독인자인 프로테아제 활성에는 영향을 주지 않으면서도, 만성감염을 매개하는데 중요한 생물막의 형성은 의미있게 감소시켰다. 특히 5f는 생물막의 성숙단계 보다는 녹농균 세포의 초기 부착을 억제하였다. 이러한 결과들을 바탕으로, 5f의 경우 독성의 증가 없이 생물막 형성을 억제할 수 있는 물질로 응용이 가능하다고 제안한다.

Porphyromonas gingivalis에 대한 노각나무 잎 추출물의 항균활성 및 생물막 형성 억제 효과 (Antibacterial and Antibiofilm Activities of Leaf Extracts of Stewartia koreana against Porphyromonas gingivalis)

  • 김혜수;박민정;김수정;김부경;박준호;김대현;조수정
    • 생명과학회지
    • /
    • 제31권3호
    • /
    • pp.330-337
    • /
    • 2021
  • 본 연구에서는 천연물유래 구강건강 개선소재로써 노각나무의 이용 가능성을 알아보기 위해 노각나무 잎과 줄기를 에탄올에 추출한 다음 구강미생물에 대한 추출물의 항균활성을 조사하였다. 노각나무 잎과 줄기 추출물(1 mg/disc)은 구강미생물 중 P. gingivalis KCTC5352에 대해서만 항균활성을 나타내었으며 줄기보다는 잎 추출물의 항균활성이 우수하였다. 시판되고 있는 구강케어제품에 사용되고 있는 항균제와 노각나무 잎 추출물의 항균활성을 비교한 결과, P. gingivalis에 대한 노각나무 잎 추출물과 양성대조구로 사용한 triclosan의 항균활성은 유사하게 나타났으며. P. gingivalis에 대한 노각나무 잎 추출물의 MIC는 0.4 mg/ml이고 정균작용을 하였다. 노각나무 잎추출물이 0.2-2.0 mg/ml 농도로 처리된 배양액에서 P. gingivalis KCTC5352의 생물막 형성과 세균 생육은 추출물의 농도가 증가할수록 농도의존적으로 억제되는 경향을 보였다. 또한 노각나무 잎 추출물(1 mg/ml) 처리가 P. gingivalis의 생물막 형성에 미치는 영향을 주사전자현미경으로 관찰한 결과에 의하면 추출물을 처리하지 않은 대조구는 추출물 처리구에 비해 P. gingivalis가 군집을 이루며 모여 있었고 세포 주변에서 생물막이 관찰되었지만 추출물을 처리한 처리구의 세포 주변에서는 생물막을 관찰할 수 없었다. qRT-PCR을 이용하여 생물막 형성 초기 과정에서 치면 부착에 필수적인 섬모(fimbriae)관련 mRNA 발현 양상을 0조사한 결과, 노각나무 잎 추출물이 0.2-2.0 mg/ml의 농도로 처리된 배양액에서 fimA와 mfa1 유전자 발현은 추출물의 농도가 높아질수록 농도의존적으로 억제되는 것을 확인할 수 있었다. 이상의 결과를 종합하면 노각나무 잎 추출물은 치주질환 원인균인 P. gingivalis에 대한 항균 활성과 생물막 형성 억제능이 우수하기 때문에 천연물유래 구강건강 개선소재로써 이용 가능성이 높을 것으로 판단된다.

유동층 반응기에서 Candida tropicalis 균에 의한 페놀함유 폐수처리에 관한 연구 (The Phenol Wastewater Treatment by Candida tropicalis in Fluidized Bed Biofilm Reactor)

  • 김우식;염경호;김응식
    • 한국미생물·생명공학회지
    • /
    • 제13권1호
    • /
    • pp.33-39
    • /
    • 1985
  • The effects of initial concentration, flow rate, and recycle ratio on the removal efficiency of phenol were studied in a tapered fluidized bed reactor packed with activated carbon which was attached with Candida tropicalis. The optimum conditions of Candida tropicalis were showed that pH was 7.0 and temperature was $30^{\circ}C$, and the specific growth rate of Candida tropicalis was satisfied with the Monod equation up to 500 mg/L of phenol, and beyond it the inhibition of substrate was found. According to the increases of initial concentration and flow rate, the removal efficiency was decreased, as the recycle ratio was increased, the removal efficiency was increased. In the case of flow rate of 10mL/sec and the recycle ratio of 2, the removal efficiency was 90% above for the all of initial concentration. The removal rate of phenol was the first order reaction in this system, and the rate equation of reaction was as follows.

  • PDF

생물학적 영양염류 제거를 위한 돈사폐수의 반응 특성 (Reaction Characteristics of Piggery Wastewater for Biological Nutrient Removal)

  • 한동준;류재근;임연택;임재명
    • 환경위생공학
    • /
    • 제13권1호
    • /
    • pp.44-56
    • /
    • 1998
  • This study was performed to investigate the reaction characteristics of piggery wastewater for biological nutrient removal. The reaction characteristics were discussed the fraction of organics, the behavior of nitrogen, nitrification, denitrification, and the behavior of phosphorus. The fraction of readily biodegradable soluble COD was 11-12 percent. The ammonia nitrogen was removed via stripping, nitrification, autotrophic cell synthesis, and heterotrophic cell synthesis. The removal percents by each step were 12.1%, 68.9%, 15.0%, and 4.0%, respectively. Nitrification inhibition of piggery wastewater was found to occur at an influent volumetric loading rate over 0.2 NH$_{3}$-N kg/m$^{3}$/d. Denitrification rates were the highest in the raw wastewater and the lowest in the anaerobic effluent. The denitritation of piggery wastewater came out to be possible, and the rate of organic carbon consumption decreased about 10 percent. The phosphorus removed was released in the form of ortho-p in the aerobic fixed biofilm reactor, it was caused by autooxidation. The synthesis and release of phosphorus were related to the ORP and the boundary value for the phase change was about 170mV. In the synthesis phase, the phosphorus removal rate per COD removed was 0.023mgP$_{syn}$/mgCOD$_{rem}$. The phosphorus contents of the microorganism were 4.3-6.0% on a dry weight basis.

  • PDF

SHARON/ANAMMOX 결합공정에서 슬러지의 입상화와 특성 (Granulation and Characteristics of Sludges in the Combined SHARON/ANAMMOX Processes)

  • 황인수;민경석
    • 한국물환경학회지
    • /
    • 제22권2호
    • /
    • pp.300-307
    • /
    • 2006
  • The combined SHARON (Single reactor system for High ammonium Removal Over Nitrite)-ANAMMOX (Anaerobic ammonium oxidation) reactor were operated in mesophilic condition ($35^{\circ}C$). In this study, microbial granulation and characteristics of SHARON and ANAMMOX sludges were investigated using settling test, Scanning Electron Microscopy (SEM) and Fluorescence In Situ Hybridization (FISH). In SHARON reactor, Aerobic granulation with diameter of 1.5~2.5 mm was accomplished but aerobic granulation was weaker than anaerobic granular sludge. Initial seed sludge of ANAMMOX reactor was used as attached media for biofilm growth. ANAMMOX sludge was more compact and rounder rather than seed sludge. Though ANAMMOX sludge has high activity, it has lower settling ability than the seed granule. The color of ANAMMOX sludge was changed from dark to redish brown granular with diameter of 1~2 mm. In FISH of ANAMMOX sludge, high fraction of Candidatus B. stuttgartiensis which paid great role of nitrogen conversion was detected. Also, FISH results reveals that ANAMMOX bacteria inhabit at inner parts near surface, having advantages in utilization of substrates and protection from oxygen inhibition.

Acyl Homoserine Lactone in Interspecies Bacterial Signaling

  • Kanojiya, Poonam;Banerji, Rajashri;Saroj, Sunil D.
    • 한국미생물·생명공학회지
    • /
    • 제50권1호
    • /
    • pp.1-14
    • /
    • 2022
  • Bacteria communicate with each other through an intricate communication mechanism known as quorum sensing (QS). QS regulates different behavioral aspects in bacteria, such as biofilm formation, sporulation, virulence gene expression, antibiotic production, and bioluminescence. Several different chemical signals and signal detection systems play vital roles in promoting highly efficient intra- and interspecies communication. Gram-negative bacteria coordinate gene regulation through the production of acyl homoserine lactones (AHLs). Gram-positive bacteria do not code for AHL production, while some gram-negative bacteria have an incomplete AHL-QS system. Despite this fact, these microbes can detect AHLs owing to the presence of LuxR solo receptors. Various studies have reported the role of AHLs in interspecies signaling. Moreover, as bacteria live in a polymicrobial community, the production of extracellular compounds to compete for resources is imperative. Thus, AHL-mediated signaling and inhibition are considered to affect virulence in bacteria. In the current review, we focus on the synthesis and regulation mechanisms of AHLs and highlight their role in interspecies bacterial signaling. Exploring interspecies bacterial signaling will further help us understand host-pathogen interactions, thereby contributing to the development of therapeutic strategies intended to target chronic polymicrobial infections.

Identification of a Second Type of AHL-Lactonase from Rhodococcus sp. BH4, belonging to the α/β Hydrolase Superfamily

  • Ryu, Du-Hwan;Lee, Sang-Won;Mikolaityte, Viktorija;Kim, Yea-Won;Jeong, Haeyoung;Lee, Sang Jun;Lee, Chung-Hak;Lee, Jung-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권6호
    • /
    • pp.937-945
    • /
    • 2020
  • N-acyl-homoserine lactone (AHL)-mediated quorum sensing (QS) plays a major role in development of biofilms, which contribute to rise in infections and biofouling in water-related industries. Interference in QS, called quorum quenching (QQ), has recieved a lot of attention in recent years. Rhodococcus spp. are known to have prominent quorum quenching activity and in previous reports it was suggested that this genus possesses multiple QQ enzymes, but only one gene, qsdA, which encodes an AHL-lactonase belonging to phosphotriesterase family, has been identified. Therefore, we conducted a whole genome sequencing and analysis of Rhodococcus sp. BH4 isolated from a wastewater treatment plant. The sequencing revealed another gene encoding a QQ enzyme (named jydB) that exhibited a high AHL degrading activity. This QQ enzyme had a 46% amino acid sequence similarity with the AHL-lactonase (AidH) of Ochrobactrum sp. T63. HPLC analysis and AHL restoration experiments by acidification revealed that the jydB gene encodes an AHL-lactonase which shares the known characteristics of the α/β hydrolase family. Purified recombinant JydB demonstrated a high hydrolytic activity against various AHLs. Kinetic analysis of JydB revealed a high catalytic efficiency (kcat/KM) against C4-HSL and 3-oxo-C6 HSL, ranging from 1.88 x 106 to 1.45 x 106 M-1 s-1, with distinctly low KM values (0.16-0.24 mM). This study affirms that the AHL degrading activity and biofilm inhibition ability of Rhodococcus sp. BH4 may be due to the presence of multiple quorum quenching enzymes, including two types of AHL-lactonases, in addition to AHL-acylase and oxidoreductase, for which the genes have yet to be described.

Inhibition of Microbial Quorum Sensing Mediated Virulence Factors by Pestalotiopsis sydowiana

  • Parasuraman, Paramanantham;Devadatha, B;Sarma, V. Venkateswara;Ranganathan, Sampathkumar;Ampasala, Dinakara Rao;Reddy, Dhanasekhar;Kumavath, Ranjith;Kim, In-Won;Patel, Sanjay K.S.;Kalia, Vipin Chandra;Lee, Jung-Kul;Siddhardha, Busi
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권4호
    • /
    • pp.571-582
    • /
    • 2020
  • Quorum sensing (QS)-mediated infections cause severe diseases in human beings. The control of infectious diseases by inhibiting QS using antipathogenic drugs is a promising approach as antibiotics are proving inefficient in treating these diseases. Marine fungal (Pestalotiopsis sydowiana PPR) extract was found to possess effective antipathogenic characteristics. The minimum inhibitory concentration (MIC) of the fungal extract against test pathogen Pseudomonas aeruginosa PAO1 was 1,000 ㎍/ml. Sub-MIC concentrations (250 and 500 ㎍/ml) of fungal extract reduced QS-regulated virulence phenotypes such as the production of pyocyanin, chitinase, protease, elastase, and staphylolytic activity in P. aeruginosa PAO1 by 84.15%, 73.15%, 67.37%, 62.37%, and 33.65%, respectively. Moreover, it also reduced the production of exopolysaccharides (74.99%), rhamnolipids (68.01%), and alginate (54.98%), and inhibited the biofilm formation of the bacteria by 90.54%. In silico analysis revealed that the metabolite of P. sydowiana PPR binds to the bacterial QS receptor proteins (LasR and RhlR) similar to their respective natural signaling molecules. Cyclo(-Leu-Pro) (CLP) and 4-Hydroxyphenylacetamide (4-HPA) were identified as potent bioactive compounds among the metabolites of P. sydowiana PPR using in silico approaches. The MIC values of CLP and 4-HPA against P. aeruginosa PAO1 were determined as 250 and 125 ㎍/ml, respectively. All the antivirulence assays were conducted at sub-MIC concentrations of CLP (125 ㎍/ml) and 4-HPA (62.5 ㎍/ml), which resulted in marked reduction in all the investigated virulence factors. This was further supported by gene expression studies. The findings suggest that the metabolites of P. sydowiana PPR can be employed as promising QS inhibitors that target pathogenic bacteria.

Nitrogen Removal from Milking Center Wastewater via Simultaneous Nitrification and Denitrification Using a Biofilm Filtration Reactor

  • Won, Seung-Gun;Jeon, Dae-Yong;Kwag, Jung-Hoon;Kim, Jeong-Dae;Ra, Chang-Six
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권6호
    • /
    • pp.896-902
    • /
    • 2015
  • Milking center wastewater (MCW) has a relatively low ratio of carbon to nitrogen (C/N ratio), which should be separately managed from livestock manure due to the negative impacts of manure nutrients and harmful effects on down-stream in the livestock manure process with respect to the microbial growth. Simultaneous nitrification and denitrification (SND) is linked to inhibition of the second nitrification and reduces around 40% of the carbonaceous energy available for denitrification. Thus, this study was conducted to find the optimal operational conditions for the treatment of MCW using an attached-growth biofilm reactor; i.e., nitrogen loading rate (NLR) of 0.14, 0.28, 0.43, and $0.58kg\;m^{-3}\;d^{-1}$ and aeration rate of 0.06, 0.12, and $0.24\;m^3\;h^{-1}$ were evaluated and the comparison of air-diffuser position between one-third and bottom of the reactor was conducted. Four sand packed-bed reactors with the effective volume of 2.5 L were prepared and initially an air-diffuser was placed at one third from the bottom of the reactor. After the adaptation period of 2 weeks, SND was observed at all four reactors and the optimal NLR of $0.45kg\;m^{-3}\;d^{-1}$ was found as a threshold value to obtain higher nitrogen removal efficiency. Dissolved oxygen (DO) as one of key operational conditions was measured during the experiment and the reactor with an aeration rate of $0.12\;m^3\;h^{-1}$ showed the best performance of $NH_4-N$ removal and the higher total nitrogen removal efficiency through SND with appropriate DO level of ${\sim}0.5\;mg\;DO\;L^{-1}$. The air-diffuser position at one third from the bottom of the reactor resulted in better nitrogen removal than at the bottom position. Consequently, nitrogen in MCW with a low C/N ratio of 2.15 was successfully removed without the addition of external carbon sources.