• Title/Summary/Keyword: Biofilm inactivation

Search Result 7, Processing Time 0.02 seconds

Control of Bacterial Adhesion and Biofilm Using Electric Field (전기장을 이용한 미생물 부착과 생물막 제어)

  • Shim, Soo-Jin;Kim, Choon-Soo;Yoon, Je-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.9
    • /
    • pp.692-700
    • /
    • 2011
  • The use of electric field has been studied as an alternative for biofilm control dominated by disinfectants and antibiotics. This technology would be advantageous in the environmental respect that biofilm can be controlled based on electron transfer, not using chemical disinfectants and antibiotics. Control mechanisms which were reported by earlier studies are organized as; (1) bacterial adhesion control by electrostatic repulsion at a negative current, (2) bacterial adhesion control using bacterial motion and (3) bacterial inactivation by direct oxidation at a positive current, (4) bioelectric effect leading to biofilm inactivation. In this review article, we summarized the technologies for biofilm control using electric field and provided some application examples from previous studies.

Utilization of Piper betle L. Extract for Inactivating Foodborne Bacterial Biofilms on Pitted and Smooth Stainless Steel Surfaces

  • Songsirin Ruengvisesh;Pattarapong Wenbap;Peetitas Damrongsaktrakul;Suchanya Santiakachai;Warisara Kasemsukwimol;Sirilak Chitvittaya;Yossakorn Painsawat;Isaratat Phung-on;Pravate Tuitemwong
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.6
    • /
    • pp.771-779
    • /
    • 2023
  • Biofilms are a significant concern in the food industry. The utilization of plant-derived compounds to inactivate biofilms on food contact surfaces has not been widely reported. Also, the increasing negative perception of consumers against synthetic sanitizers has encouraged the hunt for natural compounds as alternatives. Therefore, in this study we evaluated the antimicrobial activities of ethanol extracts, acetone extracts, and essential oils (EOs) of seven culinary herbs against Salmonella enterica serotype Typhimurium and Listeria innocua using the broth microdilution assay. Among all tested extracts and EOs, the ethanol extract of Piper betle L. exhibited the most efficient antimicrobial activities. To evaluate the biofilm inactivation effect, S. Typhimurium and L. innocua biofilms on pitted and smooth stainless steel (SS) coupons were exposed to P. betle ethanol extract (12.5 mg/ml), sodium hypochlorite (NaClO; 200 ppm), hydrogen peroxide (HP; 1100 ppm), and benzalkonium chloride (BKC; 400 ppm) for 15 min. Results showed that, for the untreated controls, higher sessile cell counts were observed on pitted SS versus smooth SS coupons. Overall, biofilm inactivation efficacies of the tested sanitizers followed the trend of P. betle extract ≥ BKC > NaClO > HP. The surface condition of SS did not affect the biofilm inactivation effect of each tested sanitizer. The contact angle results revealed P. betle ethanol extract could increase the surface wettability of SS coupons. This research suggests P. betle extract might be utilized as an alternative sanitizer in food processing facilities.

Comparison of Biofilm Removal Characteristics by Chlorine and Monochloramine in Simulated Drinking Water Distribution Pipe (모형 수도관에서 염소와 모노클로라민에 의한 생물막 제거 특성 비교)

  • Park, Se-Keun;Choi, Sung-Chan;Kim, Yeong-Kwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.1
    • /
    • pp.26-33
    • /
    • 2006
  • This study investigated the characteristics of the biofilm removal by free chlorine or monochloramine. The simulated drinking water distribution pipes on which biofilms had been formed were supplied with tap water containing 0.5, 1.0, 2.0 mg/L of free chlorine or monochloramine residuals. The biofilm removal was characterized by measurement of attached HPC and biomass on pipe surfaces. Chlorine was more effective in both inactivation of attached viable heterotrophic bacteria and removal of biofilm biomass compared to monochloramine. Biofilm matrix was not much eliminated from the surfaces by monochloramine disinfection. Free chlorine residual of 2.0 mg/L was found to be effective in biomass removal. However, biofilm level as low as $10CFU/cm^2$ of attached HPC and $5{\mu}g/cm^2$ of biomass still remained on the surfaces at 2.0 mg/L of chlorine residual. The measurement of biomass appeared to be a useful means in evaluating the characteristics of biofilm removal.

Inactivation of Candida albicans Biofilm by Radachlorin-Mediated Photodynamic Therapy (라다클로린으로 매개된 광역학치료에 의한 백색 캔디다 바이오필름의 비활성)

  • Kwon, Pil Seung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.4
    • /
    • pp.273-278
    • /
    • 2015
  • The purpose of this study was to evaluate the in-vitro efficacy of PDT using red light emitting diode (LED) with Radachlorin for biofilm inhibition of clinical Candida albicans isolates. The suspensions containing C. albicans at $9{\times}10^8CFU/mL$ were prepared on yeast nitrogen base containing 5% glucose. The biofilm formation was grown for 3 h after seeding suspensions each 100 ul on a 96-well plate and then supernatant was discarded. Each well was treated with $0.39{\mu}g/mL$ from $50{\mu}g/mL$ concentrations of Radachlorin on adherent biofilm. After a 30-minute incubation, light was irradiated for 30, 60, or 90 minutes using the following light source of wavelength 630 nm LED, at energy densities of 14, 29, and $43J/cm^2$. Afterwards, all supernatant was removed and dried. Adherent cells were stained with safranin O and dried. The cell viability was measured using a microplate reader at 490 nm. Also, a fluorescent signal on C. albicans was observed by saturation of a photosensitizer. In conclusion, a significant inhibition of 72.5% was observed to C. albicans on biofilm at the Radachlorin dose of $50{\mu}g/mL$ with 630 nm LED. The Photosensitizer (Radachlorin) was adequate at 30 minuttes for C. albicans. Overall, the results showed that inhibition of biofilm formation was Radachlorine dose-dependent. The results suggest that PDT, using Radachlorin with 630 nm LED, is able to decrease biofilm formation of C. albicans.

Combined Chlorite-Monochloramine Application for Controlling Nitrifying and Heterotrophic Bacteria in Drinking Water Distribution System (상수관망에서 Chlorite-Monochloramine 소독제를 이용한 질산화 세균 및 종속영양세균의 제어)

  • Park, Se-Keun;Kim, Yeong-Kwan;Choi, Sung-Chan
    • Korean Journal of Microbiology
    • /
    • v.49 no.4
    • /
    • pp.321-327
    • /
    • 2013
  • In the present work, the reactors that harbor bacterial biofilms including ammonia-oxidizing bacteria (AOB) and heterotrophic bacteria were treated with a continuous dose of chlorite ($0.66{\pm}0.01mg/L$) either with or without monochloramine at $1.77{\pm}0.03mg/L$. Both chlorite alone and combined chlorite-monochloramine applications effectively reduced biofilm and bulk AOB levels to near or below the detection limit ($0.6MPN/cm^2$ and 0.2 MPN/ml). The combined chlorite-monochloramine application exhibited greater AOB inactivation than chlorite alone. Unlike AOB, heterotrophic plate count (HPC) was unaffected by chlorite alone. In contrast to chlorite-only application, a combination of chlorite and monochloramine resulted in a significant reduction in HPC levels with log reductions of 3.1 and 3.0 for biofilm and bulk water, respectively. The results demonstrate that the combined chlorite-monochloramine application can provide an effective treatment for the inhibition of AOB and heterotrophic bacteria in a drinking water distribution system.

Effect of Hot Water and Microwave Heating on the Inactivation of Enterobacter sakazakii in Reconstituted Powdered Infant formula and Sunsik (열수(熱水)와 마이크로웨이브 가열이 조제분유 및 선식 용해 중 Enterobacter sakazakii 사멸에 미치는 영향)

  • Kim, Jung-Beom;Park, Yong-Bae;Lee, Myung-Jin;Kim, Ki-Cheol;Huh, Jeong-Weon;Kim, Dae-Hwan;Lee, Jong-Bok;Kim, Jong-Chan;Choi, Jae-Ho;Oh, Deog-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.23 no.2
    • /
    • pp.157-162
    • /
    • 2008
  • Enterobacter sakazakii was initially referred to as yellow-pigmented Enterobacter cloacae and reclassified in 1980. E. sakazakii infection cause life-threatening meningitis, septicemia, and necrotizing enterocolitis in infants. Powdered infant formula (PIF) and baby foods may be the important vehicle of E. sakazakii infection. It has been reported that E. sakazakii was isolated from PIF and sunsik ingredients produced in Korea. Some infants have been fed sunsik as a weaning diet. Therefore, it is necessary that this organism should be inactivated on preparing PIF and sunsik at homes and in hospitals. The cocktail of three Korean E. sakazakii strains (human, sunsik and soil isolates) were used to investigate the inactivation of this organism with hot water at 50, 60, 65, 70 and $80^{\circ}C$ and microwave heating for 60, 75, 90, 105 and 120 sec. Reconstituted PIF and sunsikwere inoculated with cocktailed vegetative cells of E. sakazakii at 6 log CFU/mL. Thermal inactivation of vegetative cells of E. sakazakii were achieved by reconstituted PIF and sunsik with hot water at $60^{\circ}C$ or greater and with microwave heating at 2,450 MHz for 75 sec or longer. Considering that biofilm formation of E. sakazakii was adapted to survive the dry environment that is PIF and sunsik and thermal resistance increased, it is suggested that inactivation of E. sakazakii was used by hot water at $70^{\circ}C$ or greater and microwave heating for 90 sec or longer. Reconstituted PIF and sunsik were inoculated with cocktailed vegetative cells of E. sakazakii at 2 to 3 log CFU/mL to investigate the growth curve of this organism and stored at 5, 10, 15, 20, 25, 30 and $35^{\circ}C$. Viable counts slightly changed at 5, $10^{\circ}C$ during 48 h but grew at $15^{\circ}C$ or greater. Considering that E. sakazakii is able to grow in infant formula milk at refrigerator temperature, reconstituted PIF and sunsik that are not immediately consumed should be discarded or stored at refrigeration temperatures within 24 h.

Antimicrobial synergism of Camellia sinensis-isolated five phenol compounds and R-(-)-carvone against mutans streptococci (다엽의 5가지 페놀성분과 R-(-)-carvone의 치아우식균 Mutans Streptococci에 대한 항균력 상승효과)

  • Song, Ok-Hee;Kang, Ok-Hua;Mun, Su-Hyun;Kim, Min-Chul;Han, Young-Sun;Choi, Sung-Hoon;Lee, Young-Seob;Kwon, Dong-Yeul
    • The Korea Journal of Herbology
    • /
    • v.31 no.5
    • /
    • pp.7-13
    • /
    • 2016
  • Objectives : Camellia sinensis (Theaceae) possesses a various beneficial effects such as free radical-scavenging, inactivation of urokinase in cancer cell proliferation, antibacterial, and hypotensive. Dental caries is one of the most common oral infectious disease in a human. Oral microorganisms play a significant role in the etiology of dental caries. An aberration to this ecology due to dietary habits, improper oral hygiene or systemic factors lead to an increase in cariogenic microorganisms. Cariogenic microorganisms like Streptococcus mutans and Streptococcus sobrinus encourage the accumulation and adherence of plaque biofilm by metabolizing sucrose into glucans. The purpose of this study was to investigate the antimicrobial activity of phenolic compounds of Camellia sinensis and R-carvone, monoterpenes, is can be found naturally in numerous essential oils, on Streptococcus mutans and Streptococcus sobrinus .Methods : The antimicrobial activity of these compounds was determined by the broth microdilution method and checkerboard dilution assay to investigate the potential synergistic effects of each five compounds of Camellia sinensis (C. sinensis) and R-carvone.Results : C. sinensis-isolated compounds and R-carvone were determined with MIC of more than 1,000 ㎍/mL. However, the combination test showed significant synergism against S. mutans and S. sobrinus, implicated in the lowered MICs.Conclusions : These results suggest that combinatory application of phenolic five compounds (theophyllin, l-theanine, epicatechin, epicatechin gallate, and caffeine) from C. sinensis and R-carvone has a potential synergistic effect and thus may be useful as a mouthrinse in helping control cariogenic microorganism.