• Title/Summary/Keyword: Bioenergy crop

Search Result 227, Processing Time 0.035 seconds

Candidate Genes Related to Sugar Content in Sweetpotato using GWAS

  • Tae Hwa Kim;Mi Nam Chung;Hyeong Un Lee;Won Park;Sang Sik Nam
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.192-192
    • /
    • 2022
  • Sweetpotato is rich in starch, which is converted to sugar during storage due to enzymatic hydrolysis. The sugar content of sweetpotato is a component related to taste and storability. In this study, the sugar content (fructose, glucose, maltose, sucrose and total sugar content) of 94 genotypes was evaluated and the GWAS (Genome-Wide Association Study) was conducted to search for candidate genes for sugar content. The fructose and glucose content were 0.2 ~ 8.8 and 0.2 ~ 9.4 g/100g, respectively. The maltose, sucrose and total sugar content were 0.2 ~ 9.1,3.2 - 30.0 and 7.9 ~ 40.2 g/100g, respectively. The fructose and glucose showed a positive correlation (0.98). The 94 genotypes were genotyped with genotyping-by-sequencing (GBS) and aligned against the reference genome sequences of sweetpotato. The GBS libraries from 94 genotypes were sequenced on an Illumina HiSeqXten system, and 1,339,892 SNPs (Single Nucleotide Polymorphism) were generated. Filtering for < 60% missing rate and > 0.05 minor allele frequency resulted in a total of 44,255 SNPs used in GWAS. The GAPIT (Genome Association and Prediction Integrated Tool) was used to conduct based on the mean of sugar content with a Bonferroni-corrected chromosome-wide significance threshold with a -logio(P) of 5.95. The significant SNPs were obtained with fructose (seven), glucose (six), maltose (four) and sucrose (nine). There were several genes related to sugar content around the significant SNPs such as sugar transport protein 8-like, probable galactose-1 -phosphate uridyltransferase-like and beta-amylase. These results will contribute to understanding of sugar content and conversion in sweetpotato.

  • PDF

Optimization of KOH pretreatment conditions from Miscanthus using high temperature and extrusion system (고온 압출식 반응시스템을 이용한 억새 바이오매스의 KOH 전처리조건 최적화)

  • Cha, Young-Lok;Park, Sung-Min;Moon, Youn-Ho;Kim, Kwang-Soo;Lee, Ji-Eun;Kwon, Da-Eun;Kang, Yong-Gu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.1243-1252
    • /
    • 2019
  • The purpose of this study is to investigate the optimum conditions of biomass pretreatment with potassium hydroxide (KOH) for efficient utilization of cellulose, hemicellulose and lignin from Miscanthus. The optimization of variables was performed by response surface methodology (RSM). The variation ranges of the parameters for the RSM were potassium hydroxide 0.2~0.8 M, reaction temperature 110~190℃ and reaction time 10~90 min. The optimum conditions of alkali pretreatment from Miscanthus were determined as follows: concentration of KOH 0.47 M, reaction temperature 134℃ and reaction time 65 min. At the optimum conditions, the yield of cellulose from the solid fraction after pretreatment was predicted to be 95% by model prediction. Finally, 66.1 ± 1.1% of cellulose were obtained by verification experiment under the optimum conditions. The order contents of solid extraction were hemicellulose 26.4 ± 0.4%, lignin 3.7 ± 0.1% and ash 0.5 ± 0.04%. The yield of ethanol concentration of 96% was obtained using separated saccharification and fermentation.

The Effect Control of Root-knot Nematode by Using Rapeseed Meal in Continuous Cultivation at Greenhouse (유채박 이용 시설하우스 연작재배 시 뿌리혹선충 밀도억제효과)

  • Lee, Hoo-Kwan;Lee, Young-Hwa;Kim, Kwang-Soo;Jang, Young-Seok;Choi, In-Hu
    • Korean Journal of Plant Resources
    • /
    • v.28 no.1
    • /
    • pp.93-100
    • /
    • 2015
  • The objective of this study was to determine the effectiveness of rapeseed meal in controlling soil nematode. Two different rapeseed meals (Jeju local rape varieties and 'Sunmang' variety) were mixed with the soil to control nematodes environmentally. When soil physical properties in the rapeseed meal-mixed soils were analyzed, OM (organic matter), $P_2O_5$, Ca, Mg, CEC (Cation Exchange Capacity) value increased. Especially, the level of OM was 3-fold higher than control soil. Glucosinolate content of rapeseed meal was higher in Jeju local rape varieties than 'Sunmang' variety. The major components of glucosinolates were consisted of progoitrin, gluconapin, glucobrassiaca napin, and sinigrin. These components were likely to be involved in reducing nematode density.

The Agronomic Growth Characteristics and Fatty Acid Composition in Genetics Resources of Rapeseed (유채(Brassica napus L.) 유전자원의 생육특성과 지방산 조성)

  • Kwang-Soo Kim;Ji Eun Lee;Young Lok Cha;Da Hee An;Dong Chil Chang
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.83-83
    • /
    • 2022
  • 유채(Brassica napus L.)는 가을에 파종하여 이듬해에 초여름에 수확하는 겨울작물로 종실 수량이 많고 종자의 조지방 함량이 높아 주로 기름을 생산하기 위해서 재배되고 있다. 우리나라에서 유채는 경관을 목적으로 주로 재배되며 면적은 약 5,000ha 정도 재배되고 있다. 최근에는 유채유 생산을 목적으로 전남 등 남부지방에서 재배면적이 증가하고 있다. 유채유의 대량 생산을 위해서는 재배과정의 생력기계화에 유리한 논 재배가 주로 이루어지고 있다. 따라서 유채의 육종은 논 재배 적응성이 뛰어나며, 벼와의 작부가 가능하며 봄 파종 재배가 가능한 조숙품종의 육성이 필요하며, 식용유로 이용이 가능한 지방산 조성이 우수한 품종의 육성도 필요하다. 본 연구는 농촌진흥청 농업유전자원센터에서 보유하고 있는 유채 유전자원 350점을 대상으로 작물학적 생육특성을 평가하였고 종자를 수확한 후 지방산 조성을 분석하였다. 생육특성은 경장 등 12항목을 유채 유전자원 특성조사 및 관리요령(RDA, 2011)을 기준으로 조사하였다. 가을에 파종하여 재배할 때 개화소요일수는 파종 후 137일부터 210일까지 소요되었으며, 봄 파종 재배 시에는 파종 후 65일부터 150일까지 개화가 진행되었고 개화가 되지 않은 계통이 67계통이었다. 경장은 85 ~ 211cm, 수장은 28 ~ 79cm, 분지수는 5 ~ 21개, 수당 협수는 29 ~ 106개, 협당 종자수는 18 ~ 35개 및 협장은 2.7 ~ 8.8cm로 다양하였다. 유채 유전자원의 지방산 중 올레산과 에루스산 함량은 각각 9.7 ~ 70.4% 및 0 ~ 54.7% 범위였다. 공시계료 중 IT 279089 등 3자원은 개화기가 빨라 조생종 육성에, IT279125 등 3자원은 올레산 함량이 68%이상으로 양질 지방산 품종 육성재료로 활용할 예정이다.

  • PDF

Shorten heading date of M. sacchariflorus and M. sinensis and single crossing method to breed Miscanthus × giganteus cultivar for bioenergy production (바이오에너지용 이질3배체 억새(Miscanthus × giganteus) 품종육성을 위한 물억새(M. sacchariflorus)와 참억새(M. sinensis) 출수기 단축과 단교배 방법)

  • Moon, Youn-Ho;Kim, Kwang-Soo;Cha, Young-Lok;Lee, Ji-Eun;Kwon, Da-Eun;Kang, Yong-Ku
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.51-51
    • /
    • 2018
  • 본 연구는 바이오에너지용 이질3배체 억새(Miscanthus ${\times}$ giganteus) 품종육성 위한 교배재료인 물억새(M. sacchariflrous)와 참억새(M. sinensis) 출수기 단축과 단교배 방법을 개발하기 위해 수행하였다. 물억새와 참억새를 12시간 일장, 자연일장 조건에서 재배하여 출수기 단축에 미치는 단일효과를 조사하였다. 출수기에 일중 화분 발아시간, 절단한 화분친 이삭 활력 유지 및 격리방법 등 단교배 방법을 구명하여 이를 활용한 억새의 자가 수정 여부를 조사하고 시험교배를 실시하였다. 참억새와 물억새 모두 12시간 일장의 단일 조건에서 재배한 것이 자연일장에 재배한 것에 비해 출수 소요일수가 18~27일 정도 단축되었다. 화분 발아는 물억새에서 오전 6시에 왕성하였으나 시간이 경과할수록 발아율이 낮아져 오전 8시에는 10% 이하만 발아하였다. 참억새 화분은 오전 6시에는 발아하지 않았으나 오전 7시에 50% 이상이 발아하였고 8시에는 물억새와 같이 10% 이하였다. 화분친 참억새 이삭을 절단, 절화 보존액에 꽂아 백색 부직포로 격리하였을 때 절화 보존액량이 많을수록 활력 유지 일수가 증가하여 150 mL에서 물억새, 참억새 모두 7일간 개화 및 화분 비산을 지속하였다. 이 때 화분 발아율은 참억새와 물억새 모두 4일까지 40%를 유지하였다. 참억새와 물억새는 자가수정율이 ~ 2.5%로 낮고, 자연교잡 임실율은 출수기가 빠른 유전자원에서 54.4%까지 높았다. 상기 단교잡 방법을 적용한 물억새 4배체와 참억새 2배체간 14조합 시험교배로 437립의 종자를 얻었다. 본 연구의 억새 종간 단교배 방법은 우수한 종자친과 화분친으로 교배종자를 얻을 수 있어 향후 바이오매스 수량이 많으면서, 종자가 맺히지 않은 이질 3배체 품종육성에 활용할 수 있을 것으로 판단된다.

  • PDF

Quality and Combustion Characteristics of Miscanthus Pellet for Bioenergy (바이오에너지용 억새 펠릿의 품질 및 연소 특성)

  • Moon, Youn-Ho;Lee, Ji-Eun;Yu, Gyeong-Dan;Cha, Young-Lok;Song, Yeon-Sang;Lee, Kyeong-Bo
    • Clean Technology
    • /
    • v.22 no.4
    • /
    • pp.286-291
    • /
    • 2016
  • In this study we made fuel pellet from miscanthus biomass and investigated changes of physiological characteristics and electricity consumption of pelletizing process in comparison with fuel pellet made of pine sawdust. We also examined combustion characteristics including ash content and clinker forming ratio with fuel pellet made of mixing with micanthus biomass and lime powder. Bulk density of ground-miscanthus and pine sawdust were $158g\;L^{-1}$ and $187g\;L^{-1}$, respectively. Bulk density of ground miscanthus was lower than that of pine sawdust, but increased to $653g\;L^{-1}$ after pelletizing, which was similar to $656g\;L^{-1}$ of pine sawdust pellet. Moisture content in raw miscanthus and ground miscanthus were 17.0% and 11.8%, respectively. Moisture content in ground miscanthus was similar to that of pine saw dust and decreased to 6.73% after pelletizing, which was 7.7% lower than that of pine sawdust pellet. Although $27kWh\;ton^{-1}$ were required for compaction press that was an additional process in miscanthus pelleitizing, total required electricity was $193kWh\;ton^{-1}$ which was similar to $195kWh\;ton^{-1}$ of pine sawdust pellet pelleitizing. Pellet durability and pelletizing ratio of miscanthus were 98.0% and 99.7%, respectively, which were similar to 98.1% and 99.4% of pine sawdust pellet. When lime mixing ratio increased, ash melting degree and clinker forming ratio of miscanthus pellet increased. While higher heating value and clinker forming ratio of miscanthus pellet decreased.

Early Maturing Male Sterile Line of Onion (Allium cepa L.) 'Wonye 30002' (양파 조생계 웅성불임 중간모본 '원예 30002')

  • Kim, Cheol-Woo;Lee, Eul-Tai;Choi, In-Hu;Jang, Young-Seok;Suh, Sae-Jung
    • Korean Journal of Breeding Science
    • /
    • v.42 no.3
    • /
    • pp.298-301
    • /
    • 2010
  • A new intermediate parent 'Wonye 30002' (Allium cepa L.) was developed by Bioenergy Crop Research Center, NICS in 2009. As a male sterile line, 'Wonye 30002' can be used to hybrid seed production by crossing with pollen parent. The first cross was conducted between male sterile plants of 402AC203 and M1 in 2002. The male sterile line 'Wonye 30002' has circular bulb and bulb weight is 283 g. As early maturing type, lodging date is May 6. Plant height and pseudostem diameter are 43 cm and 15.5 mm, respectively. In seed harvesting characteristics, number of flower stalks and the length are 43 cm and 110 cm, respectively. The flowering date of 'Wonye 30002' is around May 24 and is completely male sterile. 'Wonye 30002' is a promising male sterile line for hybrid bulb onion seed production.

Pattern of 'Concanavalin A' Synthesis during Development of Jack Bean (Canavalia ensiformia) Pods

  • Sehee Kim;Yeoung-Hoon Lee;Eom-Ji Hwang;Tae-Joung ha;Youjin Park;Jaehee Jeong
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.323-323
    • /
    • 2022
  • Jack bean [Canavalia ensiformis (L.)], belonging to the Leguminosae family has been frequently used in edible and medicinal plants in Asian countries. Jack beans are high in protein which is approximately 30%. Concanavalin A (Con A) is a major protein of Jack bean and belongs to the family of legume lectins. It has inhibitory effect on hepatocellular carcinoma by inducing autophagy. However, Con A negatively affects nutrient utilization by other mechanisms. It binds to the glycoproteins and glycolipids of the digestive tract mucosa, inhibits the activity of the enzymes of the brush border of the enterocytes. In order to use Jack bean young seedpods, they are restricted to 'young pods (soft, pre-swelling)' according to the 'Food Code' (Ministry of Food and Drug Safety). Therefore, in this study, we investigated the quantitative change of Con A across developmental stages of Jack bean pods. Biological samples consisted of Jack bean pods and seeds in 7 stages of development. The expression pattern of Con A mRNA was monitored by quantitative reverse transcription PCR (RT-qPCR). Expression of Con A proteins was analyzed by western blotting. The expression of Con A mRNA and protein in the seeds tended to increase gradually as the seeds expanded. However, in pods, they were much less than in seeds. As the expression of Con A mRNA and protein increases as the pods thicken, it is predicted that Con A synthesis increases when the thickness growth of the pod begins after the length growth of the pod is completed. Since the expression of Con A in the pods and seeds in very low when the pods are about 2 cm, therefore 2 cm pods seem appropriate when using 'young pods'. It is also necessary to study other proteins in Jack bean, such as Urease and Canavalin. These studies will serve as the basis for processing Jack bean.

  • PDF