• Title/Summary/Keyword: Biodegradable plastics

Search Result 72, Processing Time 0.021 seconds

National Certification Marks and Standardization Trends for Biodegradable, Oxo-biodegradable and Bio based Plastics (생분해, 산화생분해, 바이오 베이스 플라스틱의 세계 주요 국가 인증마크 및 규격기준 동향)

  • You, Young-Sun;Oh, You-Sung;Kim, Un-Su;Choi, Sung-Wook
    • Clean Technology
    • /
    • v.21 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • To address recent environmental pollution, bio plastics such as biodegradable, oxo-biodegradable, and bio-based plastics have attracted much attention in a variety of industrial fields. The critical disadvantages of the weak mechanical strength and expensive product cost were gradually solved by extensive researches. As an alternative for petroleum-based plastics, the bio plastics have been applied to various items. To popularize the bio plastics, certification marks and technical standardization have been developed in the world. This article provide an over view on the recent trend on the commercialization and national certification marks.

Studies on the Development of Biodegradable Plastics and Their Safety and Degradability (생붕괴성 플라스틱 포장재의 제조 및 제조된 소재의 안전성과 분해성 연구)

  • You, Young-Sun;Han, Jung-gu;Lee, Han-na;Park, Su-il;Min, Sea-Cheol
    • Food Engineering Progress
    • /
    • v.15 no.3
    • /
    • pp.257-261
    • /
    • 2011
  • Biodegradable plastics were developed using biodegradable pellets made of corn stalk and rice husk and their safety as food packages and their biodegradability against light (ultraviolet (UV)), heat, and fungi were evaluated. Four kinds of 50-${\mu}m$ biodegradable plastics were produced by extruding the mixtures of the biodegradable pellets, low-density polyethylene (LDPE), high-density polyethylene (HDPE), and linear low-density polyethylene (LLDPE) with different compositions. Developed biodegradable plastics were safe to be used as food packages. The initial tensile strength and percentage elongation of the plastics were similar to those of LDPE, but the values decreased with increased their exposure time to UV and heat. The fungal biodegradability of the biodegradable plastics was higher than that of LDPE. The biodegradability of the biodegradable plastics shows the potential for them to be used as sustainable food packages.

Study of Biodegradable Ability of Biodegradable Plastic in Anaerobic Digestion (혐기성소화에 의한 생분해성 플라스틱의 생분해능 검토)

  • Park, Jeong-Soo;Joo, Hung-Soo;Ryu, Jae-Young;Phae, Chae-Gun;Jeon, Young-Seung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.1
    • /
    • pp.109-119
    • /
    • 2002
  • This study is to estimate that food waste bags with biodegradable plastic are really decomposed by microorganism in composting with food waste and to examinate how biodegradable plastic affects composting. 6 kinds of 30%, 4 kinds of 100% and 2 kinds of none biodegradable plastics were used in d1is study. In 30% biodegradable plastics the highest Degradation rare is 6% in meso-condition and 10% in thermal-condition. Srain at auto break decreased to 150% in meso-condition and 120% in thermal-condition. Stress at max load were also reduced to $180kgf/cm^2$ in mesocondition and $200kgf/cm^2$ in thermal-condition. Usually, LLDPE decreased larger than HDPE in physical characreristics but HDPE is higher in degradation rate. 1n stain at auto break and stress ar max load 100% biodegradable plastic declined to 230% and to $380kgf/cm^2$ in meso-condition and to 440% and to $400/cm^2$ in thermal-condition respectively. 100% biodegradable plastics showed higher biodegradation and decomposition then 30%. They appeared clearly through SEM observation. As a result, it was not appropriate to use 30% biodegradable plastics as food waste bag because they were not decomposed perfectly. It is possible to use 100% biodegradable plastic as it but cost is too high. So development of technique is needed.

  • PDF

Bio Plastics standardization and Eco Label System Trend in Domestic and Foreign Country (국내외 바이오 플라스틱 표준화 및 식별표시 제도 동향)

  • Yu, Yeong-Seon
    • The monthly packaging world
    • /
    • s.251
    • /
    • pp.51-63
    • /
    • 2014
  • 바이오 플라스틱, 에코패키징, 인체 무해성 등과 관련하여 국내외적으로 다양한 규격 및 시험방법이 있다. 바이오 플라스틱(Bio plastics)은 최근 생분해 플라스틱(Biodegradable plastics), 산화생분해 플라스틱(Oxo biodegradable plastics), 바이오 베이스 플라스틱(Bio based plastics)의 3가지로 나뉘어지고 있는 추세이다. 생분해 플라스틱 규격기준은 국제규격인 ISO 14855를 기준으로 국가별로 자국내 규격기준이 제정되어 있고, 이에 따른 인증마크를 시행하고 있다. 최근에 아랍에미레이트(UAE)에서 국제 환경규제를 전면 시행하면서 부각되고 있는 산화생분해 플라스틱은 미국의 ASTM D 6954:2004, ISO 14855 등의 기준을 토대로 제정한 UAE S 5009:2009에 의해 시행되고 있다. 또한 산업화가 급속하게 추진되고 있는 바이오 베이스 플라스틱 관련한 규격 기준은 미국 ASTM D 6866을 기준으로 시행되고 있고, 일부 국가는 자국내 규격기준을 제정하여 인증라벨을 부여하고 있다. 현재 바이오 베이스 플라스틱 인증라벨은 2002년 미국을 시작으로 2006년 일본, 2009년 벨기에, 2010년 독일, 2011년 한국에서 시행되고 있다. 그 외에도 GR마크, 녹색 인증, 단체 규격 인증, 업계 자체 규격 기준 등이 다양하게 시행되고 있다.

  • PDF

Fabrication and characterization of disposable golf tees using biodegradable polymer through 3D printing

  • Jihyuk Jung;Kwang Sun Huh;Jungho Jae;Kwang Se Lee
    • Clean Technology
    • /
    • v.29 no.3
    • /
    • pp.172-177
    • /
    • 2023
  • Many studies have been conducted on the indiscriminate use of plastic due to the environment problems it has caused all over the world. This problem can be mitigated by using eco-friendly/biodegradable plastics that can be decomposed by microorganisms or enzymes. This study focused on addressing the plastic golf tees that are thrown away at golf courses. In order to replace conventional golf tees (ABS) with a more eco-friendly alternative, this study explored a biodegradable plastic and 3D printing method for producing golf tees. Among the biodegradable plastics, PLA (polylactic acid) was found to be a good candidate as an eco-friendly material because it is biodegradable by microorganisms. Thus, golf tees were prepared by using PLA via 3D printing, and the physical and chemical properties of the tees were evaluated. The amorphous region of PLA was confirmed through XRD. Also, FT-IR showed the unique peak of PLA without impurities. It was confirmed through an optical microscope that the specific surface area and roughness had increased. This structure plays a role in firmly fixing the golf tee when it is inserted into the ground. In addition, it was possible to improve the compressive load compared to ABS golf tees while also decreasing the compressive stretching.

A Review on Photodegradable Plastics as a Packaging Material (광분해성 플라스틱의 패키징 소재의 고찰과 적용)

  • Jang, Si-Hoon;You, Young-Sun;Lee, Youn-Suk;Kim, Jai-Neung;Park, Su-Il
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.14 no.2
    • /
    • pp.81-88
    • /
    • 2008
  • There are increasing public concerns that the disposal of most synthetic carbon-based plastics is a great threat to the environment. These have led to intensive research and development of degradable plastics, such as biodegradable plastics, photodegradable plastics, and multi-degradable plastics. Although these degradable plastics may not completely replace common synthetic plastics, these minimize environmental impacts caused by non degradable plastics. Photodegradable plastics are synthetic polymers into which have been incorporated copolymers or light-sensitive additives to weaken the structural bonds in polymer chains when exposed to UV radiation. A better understanding of photodegradable plastics, which also play an important role in the degradation of multi-degradable plastics, will expand the usage of degradable plastics. The aim of present article is to review the formation, degradation mechanism and properties of photodegradable plastics.

  • PDF

Carbon Dioxide-reducible Biodegradable Polymers (이산화탄소 저감형 생분해성 고분자)

  • Lee, Won-Ki
    • Clean Technology
    • /
    • v.17 no.3
    • /
    • pp.191-200
    • /
    • 2011
  • Natural polymers, biopolymers, and synthetic polymers based on renewable resources are the basis for the 21th portfolio of sustainable and eco-friendly plastics but high-volume consumable plastics continue to be dominated by nondegradable petroleum-based materials. Three factors have recently made biodegradable polymers economically attractive: (i) rising costs of petroleum production resulting from the depletion of the most easily accessible reserves, (ii) environmental and economic concerns associated with waste plastics, and (iii) emissions of carbon dioxide from preparation of petroleum-based materials. These pressures have driven commercial applications based on biodegradable polymers which are related to reduction of carbon dioxide in processing, such poly(hydroxy alkanoate) and poly (lactide). Since initial degradation of these polymers leads to catastrophic mechanical failure, it is necessary to control the rate of initial degradation for commercial applications. In this article, we have a critic review on the recent progress of polymer modification for the control of degradation.