• 제목/요약/키워드: Biodegradable implants

검색결과 25건 처리시간 0.033초

Biomechanical Analysis of Biodegradable Cervical Plates Developed for Anterior Cervical Discectomy and Fusion

  • Cho, Pyung Goo;Ji, Gyu Yeul;Park, Sang Hyuk;Shin, Dong Ah
    • Asian Spine Journal
    • /
    • 제12권6호
    • /
    • pp.1092-1099
    • /
    • 2018
  • Study Design: In-vitro biomechanical investigation. Purpose: To evaluate the biomechanical effects of the degeneration of the biodegradable cervical plates developed for anterior cervical discectomy and fusion (ACDF) on fusion and adjacent levels. Overview of Literature: Biodegradable implants have been recently introduced for cervical spine surgery. However, their effectiveness and safety remains unclear. Methods: A linear three-dimensional finite element (FE) model of the lower cervical spine, comprising the C4-C6 vertebrae was developed using computed tomography images of a 46-year-old woman. The model was validated by comparison with previous reports. Four models of ACDF were analyzed and compared: (1) a titanium plate and bone block (Tita), (2) strong biodegradable plate and bone block (PLA-4G) that represents the early state of the biodegradable plate with full strength, (3) weak biodegradable plate and bone block (PLA-1G) that represents the late state of the biodegradable plate with decreased strength, and (4) stand-alone bone block (Bloc). FE analysis was performed to investigate the relative motion and intervertebral disc stress at the surgical (C5-C6 segment) and adjacent (C4-C5 segment) levels. Results: The Tita and PLA-4G models were superior to the other models in terms of higher segment stiffness, smaller relative motion, and lower bone stress at the surgical level. However, the maximal von Mises stress at the intervertebral disc at the adjacent level was significantly higher in the Tita and PLA-4G models than in the other models. The relative motion at the adjacent level was significantly lower in the PLA-1G and Bloc models than in the other models. Conclusions: The use of biodegradable plates will enhance spinal fusion in the initial stronger period and prevent adjacent segment degeneration in the later, weaker period.

흡수성 고정판과 나사를 이용한 중수골 골절의 치료 (Treatment of Metacarpal Bone Fracture Using Biodegradable Plates and Screws)

  • 조정목;은석찬;백롱민
    • Archives of Plastic Surgery
    • /
    • 제38권4호
    • /
    • pp.458-464
    • /
    • 2011
  • Purpose: Metacarpal fractures are common hand injury that may require operative intervention to ensure adequate reduction and stabilization. Traditionally, titanium miniplate was used for rigid fixation of bone fractures. However, the use of permanent plate lends itself to multiple complications such as infection, exposure of the hardware, tendon adhesions, tendon rupture, prolonged pain, bony atrophy and osteoporosis (stress shielding), metal sensitization, and palpation under the skin. This study evaluated the usefulness and stability of biodegradable plates and screws for treatment of metacarpal bone fractures. Methods: There was 17 patients who had surgery for metacarpal bone fracture from April 2007 to June 2010. All patients had open reduction and internal fixation. We used absorbable plates and screws (Inion CPS$^{(R)}$) for internal fixation. Postoperative results were assessed with x-ray. Stability of plates and screws, healing process and its complications were observed by clinical and radiographic assessment. Results: All patients were successfully reduced of bone fracture, and fixations with absorbable plates and screws were stable. The mean follow up period was 7.1 months. 2 patients complained postoperative pain, but they were relieved with analgesics. All patients experienced transient stiffness, but they were relieved with active assistive range of motion after removal of splint. No patients suffered complications which could be occurred by using metallic plate. Conclusion: There was no critical complications such as re-fracture or nonunion among patients. No patients suffered side effects related with metallic implants. Biodegradable implants can offer clinically stable and attractive alternative to metallic implants to stabilize metacarpal bone fractures in the hand.

마약길항제의 방출 제어형 제제 (제2보): 나록손 이식제제의 생체적합성 및 약물속도론적 평가 (Controlled Release Dosage Form of Narcotic Antagonist(II) : Biocompatibility and Pharmacokinetics of Naloxone Implant)

  • 문미란;박주애;이승진;김형국;김길수
    • Journal of Pharmaceutical Investigation
    • /
    • 제25권2호
    • /
    • pp.117-123
    • /
    • 1995
  • For the effective administration of narcotic antagonist, the application of sustained release implantable systems with biodegradable polyphosphazene was examined. Using poly[(diethyl glutamate)-co-(ethyl glycinate) phosphazene], the implantable devices containing naloxone hydrochloride were prepared and in vivo implantation studies were carried out subcutaneously in rat and rabbit with this preparation for the biocompatibility and pharmacokinetics. The histological finding in rats at initial time period was the inflammation that occurred focally around the implants, but they were showed subsequent mild and limited chronic inflammations and the irreversible changes such as necrosis and degeneration of the muscle or connective tissues were not observed. Therefore the placebo and naloxone implants are considered to be biocompatible formulations histologically. In pharmacokinetic studies, the release of naloxone from the naloxone implants into blood plasma was maintained in 192 hours, but the initial burst effect was observed. If this problem was solved, the application for the narcotic antagonist sustained release systems can be expected.

  • PDF

Naloxone의 Polyphosphazene 이식제제에 관한 연구 (Release and Bioavailability of Naloxone Sustained-Release Implants)

  • 서성연;박주애;김길수
    • Journal of Pharmaceutical Investigation
    • /
    • 제27권3호
    • /
    • pp.225-231
    • /
    • 1997
  • For the effective administration of naloxone, we attempted to investigate the naloxone sustained-release implants. Using the biodegradable polymer, poly[(diethyl glutamate)-co-(ethyl glycinate)phosphazenes](PGGP), the implantable devices containing naloxone hydrochloride(NLX HCl) and naloxone base(NLX) were prepared. The release rates of NLX and NLX HCl were compared. Influences of NLX contents on release rates were examined. For pharmacokinetic studies, NLX and NLX HCl loaded devices were implanted subcutaneously in rabbits and then the plasma concentrations of NLX were determined by HPLC(ECD). NLX-containing devices were implanted with various doses and pharmacokinetic parameters according to dose were calculated. The relative bioavailabilities were evaluated and compared. Incorporation of NLX in the polymer leaded to a slow release. There were no differences of release rates based on drug contents. In pharmacokinetic parameters determined in 216 hours, NLX loaded devices resulted in enhanced bioavailability with the higher AUC (p<0.01) than NLX HCl loaded devices and MRT was significantly (p<0.05) increased. This result demonstrates that NLX is more suitable for sustained release devices than NLX HCl. Therefore it is anticipated that the effective concentrations of naloxone could be maintained for longer periods and bioavailabilities could be improved by naloxone sustained-release implants, with varying drug base/hydrochloride.

  • PDF

치과용 임플란트 주위 열손 결손에 대한 차폐막의 유도조직재생에 관한 연구 (Guided tissue regeneration using barrier membranes on the dehiscence defects adjacent to the dental implants)

  • 이동호;최상묵
    • Journal of Periodontal and Implant Science
    • /
    • 제25권2호
    • /
    • pp.301-320
    • /
    • 1995
  • The purpose of this study was to evaluate a new biodegradable membrane - atelocollagen as a guided tissue regeneration barrier on the dehiscence defects adjacent to the dental implants. 3 beagle dogs were selected for this study and all the mandibular premolars($P_1,P_2,P_3&P_4$) were extracted. Twelve weeks after the extraction, the edentulous ridges were formed to be placed the titanium plasma-sprayed IMZ implants. Four implant osteotomies were performed on each side of the mandible. The osteotomies were placed facially in the edentulous ridges to approximate an actual dehiscence defect as closely as possible, The standardized dehiscence defects were created 3 mm in width and 4 mm in height by osteotomy. A total 24 implants were placed. e-PTFE, ateloco11agen and $Collatape^{(R)}$ were placed to cover the defects and the one defect served as a control, not covered any membrane. By random selection, three dogs were sacrificed at 2 weeks, 4weeks and 8 weeks after fixation with 3% glutaraldehyde. A week before sacrificing, 8-week dog was infused intravenously with oxy-tetracycline 30mg/kg. The left mandibular blocks were used for full decalcified histologic preparation and the right mandibular blocks were selected for undeca1cified preparation, At 2 weeks, the regenerated bone of e-PTFE and atelocollagen groups appeared to be more dense than other groups and the percentage of bone defect fill was highest for e-PTFE and follwed by ateloco1lagen group. However, the $Collatape^{(R)}$ and control groups showed a little new bone formation. $Collatape^{(R)}$ was almost degraded within 2 weeks. At 4 weeks, the regenerated new bone were much greater and denser than at 2 weeks for e-PTFE and ateloco11agen group. Although a part of atelocollagen bagan to be degraded at the margin and surrounded by foreign body giant cells related to foreign body reaction, it was generally intact and the regenerated new bone was shown much more than at 2 weeks. The amount of new bone in $Collatape^{(R)}$ and control groups at 4 weeks were similar to that of 2 weeks group. At 8 weeks, the regenerated bone was matured and observed along the implant fixture. Direct new bone formation and calcium deposits beneath the e-PTFE were observed. No further bone growth was seen in the $Collatape^{(R)}$ and control groups. In reflected fluoromicrcocopic observation, the osteogenic activity was pronounced between e-PTFE membrane and the old bone. High osteogenic activity was also observed in atelocol1agen group. This study suggested that the ateloco11agen as well as e-PTFE could be used for guided tissue regeneration on dehiscence defects adjacent to the dental implants. But the $Collatape^{(R)}$ was completely resorbed within 2 weeks and was not a suitable membrane for guided bone regeneration.

  • PDF

비주 버팀목으로 흡수성 고정판을 이용한 비첨 성형술 (Tip Plasty using Biodegradable Plate as a Columella Strut)

  • 김수영;이수향;황은아;최현곤;김순흠;신동혁;엄기일
    • Archives of Plastic Surgery
    • /
    • 제37권3호
    • /
    • pp.259-264
    • /
    • 2010
  • Purpose: Most surgeons have used autogenous cartilage for columella strut graft. But the supply of autogenous cartilage is often limited. So, this study is to investigate the usefulness of biodegradable plate as columella strut material. Methods: We studied 19 patients who have secondary cleft nasal deformity. Patients were divided into two groups. Group A patients who were not closed their growth plate underwent columella strut graft only with biodegradable plate through endonasal approach. The biodegradable plate was inserted between nasal tip and anterior nasal spine. Group B patients were closed their growth plate. They had an operation for columella strut graft with biodegradable plate fixed with autogenous conchal cartilage. If nasal tip projection was insufficient, we performed additionally onlay graft on nasal tip with autogenous soft tissue or remnant cartilage. Results: As a result of mean 14 months follow-up, we achieved a good nasal tip projection, narrowing of interalar distance and symmetrical nostril shape. No specific complications were reported except 2 cases, which were the extrusion of biodegradable plate into the nasal cavity and Staphylococcus aureus infection. Conclusion: The columella strut graft using biodegradable plate is simple and effective method. Biodegradable plate can be a good substitute for columella strut in patients who can not use autogenous cartilages.

Biodegradable implants for orbital wall fracture reconstruction

  • Jang, Hyeon Uk;Kim, So Young
    • 대한두개안면성형외과학회지
    • /
    • 제21권2호
    • /
    • pp.99-105
    • /
    • 2020
  • Background: Due to the different handling properties of unsintered hydroxyapatite particles/poly-L-lactic acid (uHA/PLLA) and polycaprolactone (PCL), we compared the surgical outcomes and the postoperative implantation accuracy between uHA/PLLA and PCL meshes in orbital fracture repair. Methods: Patients undergoing orbital wall reconstruction with PCL and uHA/PLLA mesh, between 2017 and 2019, were investigated retrospectively. The anatomical accuracy of the implant in bony defect replacement and the functional outcomes such as diplopia, ocular motility, and enophthalmos were evaluated. Results: No restriction of eye movement was reported in any patient (n= 30 for each group), 6 months postoperatively. In the PCL group, no patient showed diplopia or enophthalmos, while the uHA/PLLA group showed two patients with diplopia and one with enophthalmos. Excellent anatomical accuracy of implants was observed in 27 and 22 patients of the PCL and uHA/PLLA groups, respectively. However, this study showed that there were neither any significant differences in the surgical outcomes like diplopia and enophthalmos nor any complications with the two well-known implants. Conclusion: PCL implants and uHA/PLLA implants are safe and have similar levels of complications and surgical outcomes in orbital wall reconstruction.

생체흡수성 재료를 이용한 하악골절 치료의 결과 (The Result of Mandible Fracture Fixations with Biodegradable Materials)

  • 왕재권;은석찬;허찬영;백롱민;민경원
    • 대한두개안면성형외과학회지
    • /
    • 제9권2호
    • /
    • pp.45-50
    • /
    • 2008
  • Purpose: Traditionally, titanium miniplate has been used for rigid fixation of mandible fractures. However, the limitations of metal plate have been reported such as hypersensitivity, interference with the cranio-facial growth of growing child, secondary bone resorption around the plate, foreign body reaction, declination of primary callus formation, and bone atrophy, and so forth. Recently, biodegradable miniplate has been introduced and used as an alternative to the metal plate despite of its lower strength. This study evaluated the usefulness and stability of biodegradable plate and screw for treatment of mandible fractures. Methods: In this study, 61 patients(92 areas) diagnosed as mandible fracture in the last 2 years have been reviewed. We used titanium plate and screw in 32 patients, and biodegradable plate and screw($INION^{(R)}$) in 29 patients. Stability of plates and screws, bony healing process and its side effects were observed by clinical and radiographic assessment. Results: In the titanium material group, one of malocclusion, two of mouth opening limitation, three of pain, three of palpation were shown. The plate of six patients involved in these complications were removed. In the biodegradable group, two of mouth opening limitation, two of pain, one of localized wound infection were shown and one plate was removed secondarily. Conclusion: There was no statistical difference between two groups in bony healing and complication rates. Biodegradable implants show efficient stability during initial bone healing and low side effects in long-term follow up periods.

전기분사를 이용한 의료용 금속 임플란트의 생분해성 PLGA 고분자 코팅 (Biodegradable PLGA Polymer Coating on Biomedical Metal Implants Using Electrospraying)

  • 조성배;박철호;박귀덕;정동준;한동근
    • 폴리머
    • /
    • 제33권6호
    • /
    • pp.620-624
    • /
    • 2009
  • 의료용 금속 임플란트는 우수한 기계적 강도를 바탕으로 결손된 신체 부위의 보강, 대치, 회복을 위해 임상적으로 사용되고 있지만, 낮은 생체적합성 및 독성 때문에 염증 및 후기 혈전증, 재협착의 문제점을 가지고 있다. 이런 단점을 보안하기 위한 다양한 표면처리 기술 중, 본 연구에서는 금속표면에 생분해성 고분자인 poly (lactic-co-glycolic acid) (PLGA)를 이용하여 전기분사 코팅(electrospray coating) 기술을 검토하였다. 전기분사와 용액 인자들의 기초적인 조사를 바탕으로, 코팅 필름의 표면형상은 방울이 날아가는 거리, 용매의 비등점, 방울의 크기에 밀접한 관련이 있다. 고분자 필름의 두께는 분사량에 선형적으로 비례를 하였다. 이 결과는 전기분사된 고분자 방울이 계속적으로 고분자 필름 위에 적층되는 것을 보여준다. 따라서, 전기분사 코팅기술은 스텐트와 같은 의료용 금속 임플란트에 있어서 표면 형상 조절, 나노/마이크로 두께의 단/다중층의 고분자 필름을 제조하는데 적용될 수 있다.

Polyurethane-Coated Breast Implants Revisited: A 30-Year Follow-Up

  • Castel, Nikki;Soon-Sutton, Taylor;Deptula, Peter;Flaherty, Anna;Parsa, Fereydoun Don
    • Archives of Plastic Surgery
    • /
    • 제42권2호
    • /
    • pp.186-193
    • /
    • 2015
  • Background Polyurethane coating of breast implants has been shown to reduce capsular contracture in short-term follow-up studies. This 30-year study is the longest examination of the use of polyurethane-coated implants and their correlation with capsular contracture. Methods This study evaluates the senior surgeon's (F.D.P.) experience with the use of polyurethane-coated implants in aesthetic breast augmentation in 382 patients over 30 years. Follow-up evaluations were conducted for six months after surgery. After the six-month follow-up period, 76 patients returned for reoperation. The gross findings, histology, and associated capsular contracture were noted at the time of explantation. Results No patient during the six-month follow-up period demonstrated capsular contracture. For those who underwent reoperation for capsular contracture, Baker II/III contractures were noted nine to 10 years after surgery and Baker IV contractures were noted 12 to 21 years after surgery. None of the explanted implants had macroscopic evidence of polyurethane, which was only found during the first five years after surgery. The microscopic presence of polyurethane was noted in all capsules up to 30 years after the original operation. Conclusions An inverse correlation was found between the amount of polyurethane coating on the implant and the occurrence of capsular contracture. Increasingly severe capsular contracture was associated with a decreased amount of polyurethane coating on the surface of the implants. No contracture occurred in patients whose implants showed incomplete biodegradation of polyurethane, as indicated by the visible presence of polyurethane coating. We recommend research to find a non-toxic, non-biodegradable synthetic material as an alternative to polyurethane.