• 제목/요약/키워드: Biodegradable Material

검색결과 201건 처리시간 0.022초

마이크로 광 조형 기술을 이용한 연골조직 재생용 3 차원 인공지지체 개발 (Development of Three-dimensional Scaffold for Cartilage Regeneration using Microstereolithography)

  • 이승재;강태연;박정규;이종원;한세광;조동우
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1265-1270
    • /
    • 2007
  • Conventional methods for fabricating three-dimensional (3-D) scaffolds have substantial limitations. In this paper, we present 3-D scaffolds that can be made repeatedly with the same dimensions using a microstereolithography system. This system allows the fabrication of a pre-designed internal structure, such as pore size and porosity, by stacking photopolymerized materials. The scaffolds must be manufactured in a material that is biocompatible and biodegradable. In this regard, we synthesized liquid photocurable biodegradable TMC/TMP, followed by acrylation at terminal ends. And also, solidification properties of TMC/TMP polymer are to be obtained through experiments. Cell adhesion to scaffolds significantly affects tissue regeneration. As a typical example, we seeded chondrocytes on two types of 3-D scaffold and compared the adhesion results. Based on these results, the scaffold geometry is one of the most important factors in chondrocyte adhesion. These 3-D scaffolds could be key factors for studying cell behavior in complex environments and eventually lead to the optimum design of scaffolds for the regeneration of various tissues, such as cartilage and bone.

  • PDF

팽연보조재 혼합에 따른 펄프압출물의 물리적 특성 (Physical Properties of Pulp Extrudates Mixed with Expanding Additives)

  • 송대빈;김철환;정효석;이영민
    • Journal of Biosystems Engineering
    • /
    • 제30권5호
    • /
    • pp.285-292
    • /
    • 2005
  • Extrusion process and physical properties of extrudates of pulp powder (TMP, thermomechanical pulp fibers) mixed with expanding additives was evaluated to develop biodegradable packaging materials. To find out the optimum condition, the status of extrusion process, coefficient of elastic and expansion ratio of extrudates were tested on the composites (wheat flour, soluble starch, polyvinyl alcohol), blending conditions of composites and moisture contents of extrudates. In case of material composition, wheat flour played a key role to keep extrusion process irrespective of the added amounts of soluble starch and polyvinyl alcohol. The coefficient of elastic of extrudates was increased and the expansion ratio was reduced as the added amounts of wheat flour increased. Also, the coefficient of elastic of extrudates was decreased as the moisture content of extrudates increased. The lowest coefficient of elastic was 439.55 kPa under the condition, of pulp powder mixed with $20\%$ of wheat flour based on pulp weight and $10\%$ of soluble starch based on wheat flour weight and controlled $20\%$(wb) of moisture content.

아까시 꽃 추출물을 첨가한 성게 껍질 필름의 제조 (Preparation of Sea Urchin Skeleton Film Containing Robinia pseudoacacia Flower Extract)

  • 양현주;송경빈
    • 한국식품영양과학회지
    • /
    • 제45권5호
    • /
    • pp.778-781
    • /
    • 2016
  • 본 연구에서는 폐기되는 성게 껍질을 이용한 생분해성 필름소재를 개발하고자 gelatin을 첨가한 복합필름 및 항산화, 항균성을 부여하기 위해 아까시 꽃 추출물(RFE)을 첨가한 필름을 제조하였다. 그 결과 gelatin 비율이 증가함에 따라 성게 껍질 필름의 인장강도가 증가하였고 신장률이 감소하였으며, 성게 껍질과 gelatin을 8:2 비율로 첨가하였을 때 최적의 물성을 보였다. 또한, 필름에 RFE를 첨가함에 따라 인장강도는 감소하였으나 신장률과 필름 투습도는 증가하였다. RFE 함유 성게 껍질 필름의 ABTS, DPPH 라디칼 소거능 측정과 디스크 확산법을 이용하여 항산화 및 항균 능력을 측정하였는데, RFE 농도가 증가함에 따라 항산화, 항균 능력이 향상하였다. 따라서 본 연구 결과, RFE를 첨가한 생분해 성게 껍질 필름은 적절한 물성과 함께 항산화, 항균 능력이 있기에 가공식품의 저장성을 증대시킬 수 있는 기능성 포장 소재로의 활용이 가능하다고 판단된다.

고속가스플래임 용사법을 이용한 광촉매 $TiO_2$-생분해성 플라스틱 복합재료의 개발 (The Development of Functional Photocatalytic $TiO_2$-Biodegrdable Plastic Composite Material by HVOF Spraying)

  • 방희선;방한서
    • Journal of Welding and Joining
    • /
    • 제24권5호
    • /
    • pp.57-61
    • /
    • 2006
  • For the production of functional $TiO_2$-biodegradable plastic (polybutylene succinate:PBS) composite material with photocayalytic activity, we attempted to prepare $TiO_2$ coatings on PBS substrate by HVOF and plasma spraying techniques under various conditions. The microstructures of coatings were characterized with SEM and XRD analysis, and the photocatalytic efficiency of coatings was evaluated by the photo degradation of gaseous acetaldehyde. The effects of primary particle size and spraying parameters on the formation behavior, photocatalytic performance of the coatings have been investigated. The results indicated that for both the HVOF sprayed $P_{200}$ and $P_{30}$ coatings, the high anatase ratio of 100% can be achieved regardless of fuel gas pressure. On the other hand, the HVOF sprayed $P_7$ coating exhibited a largely decreased anatase ratio (from 100% to 49.1%) with increasing the fuel gas pressure, which may be attributed to much higher susceptibility of heat for 7 nm agglomerated powder. HVOF sprayed $P_{200}$ and $P_{30}$ coatings show better performance as compared to that of plasma sprayed $P_{200}$ coatings owing to the higher anatase ratio. However, the HVOF sprayed $P_7$ coatings did not show the photocatalytic activity, which may result from the extremely small reaction surface area to the photocatalytic activity and low anatase ratio.

Bone remodeling effects of Korean Red Ginseng extracts for dental implant applications

  • Kang, Myong-Hun;Lee, Sook-Jeong;Lee, Min-Ho
    • Journal of Ginseng Research
    • /
    • 제44권6호
    • /
    • pp.823-832
    • /
    • 2020
  • Background: The formation of a nanotube layer on a titanium nanotube (N-Ti) plate facilitates an active reaction between bone cells and the material surface via efficient delivery of the surface materials of the dental implant into the tissues. Studies have reported that Korean Red Ginseng extracts (KRGEs) are involved in a variety of pharmacological activities: we investigated whether implantation with a KRGE-loaded N-Ti miniimplant affects osteogenesis and osseointegration. Methods: KRGE-loaded nanotubes were constructed by fabrication on pure Ti via anodization, and MC3T3-E1 cells were cultured on the N-Ti. N-Ti implants were subsequently placed on a rat's edentulous mandibular site. New bone formation and bone mineral density were measured to analyze osteogenesis and osseointegration. Results: KRGE-loaded N-Ti significantly increased the proliferation and differentiation of MC3T3-E1 cells compared with cells on pure Ti without any KRGE loading. After 1-4 weeks, the periimplant tissue in the edentulous mandibular of the healed rat showed a remarkable increase in new bone formation and bone mineral density. In addition, high levels of the bone morphogenesis protein-2 and bone morphogenesis protein-7, besides collagen, were expressed in the periimplant tissues. Conclusion: Our findings suggest that KRGE-induced osteogenesis and osseointegration around the miniimplant may facilitate the clinical application of dental implants.

BGF/PLA 복합재료를 이용한 골절치료용 고정판의 체액 노출 조건에 따른 성능평가 (Performance Evaluation of Bone Plates Consisted of BGF/PLA Composite Material according to Body Fluid Exposure Conditions)

  • 정경채;한민구;;장승환
    • Composites Research
    • /
    • 제30권1호
    • /
    • pp.21-25
    • /
    • 2017
  • 본 연구에서는 일방향 생분해성 유리섬유(BGF)와 친환경 생분해성 수지인 폴리락트산(PLA)을 이용하여 골절치료용 복합재료 고정판을 제작하고 체액 노출에 따른 고정판의 성능 변화를 확인하고자 $50.0^{\circ}C$ 온도조건으로 설정된 인산완충식염수(PBS)에 제작된 생분해성 고정판을 0~3주 동안 노출시켜 질량 변화를 측정하고 4점 굽힘 실험을 수행하였다. 굽힘 강성, 수분 흡수율, 그리고 질량 감소율과 같은 기계적 특성 변화를 파악하였으며 실험 결과로부터 노출 기간이 증가함에 따라 고정판을 구성하고 있는 생분해성 재료들의 손실로 인해 기계적 물성이 서서히 저하되는 경향을 보이는 것을 확인하였다.

펨토초 레이저 절삭 공정을 이용한 생분해성 나노섬유 표면 미세 패터닝 공정 (Micropatterning on Biodegradable Nanofiber Scaffolds by Femtosecond Laser Ablation Process)

  • 정용우;전인동;김유찬;석현광;정석;전호정
    • 한국표면공학회지
    • /
    • 제49권6호
    • /
    • pp.555-559
    • /
    • 2016
  • A biodegradable nanofiber scaffolds using electrospining provide fibrous guidance cues for controlling cell fate that mimic the native extracellular matrix (ECM). It can create a pattern using conventional electrospining method, but has a difficulty to generate one or more pattern structures. Femtosecond(fs) laser ablation has much interested in patterning on biomaterials in order to distinguish the fundamental or systemic interaction between cell and material surface. The ablated materials with a short pulse duration using femtosecond laser that allows for precise removal of materials without transition of the inherent material properties. In this study, linear grooves and circular craters were fabricated on electrospun nanofiber scaffolds (poly-L-lactide(PLLA)) by femtosecond laser patterning processes. As parametric studies, pulse energy and beam spot size were varied to determine the effects of the laser pulse on groove size. We confirmed controlling pulse energy to $5{\mu}J-20{\mu}J$ and variation of lens maginfication of 2X, 5X, 10X, 20X created grooves of width to approximately $5{\mu}m-50{\mu}m$. Our results demonstrate that femtosecond laser processing is an effective means for flexibly structuring the surface of electrospun PLLA nanofibers.

생체 분해성 임플란트용 Mg-Zn-Ca 합금의 기계적 및 부식특성에 미치는 Sr 첨가의 영향 (Effect of Sr Addition on Mechanical and Corrosion Properties of Mg-Zn-Ca Alloy for Biodegradable Implant Material)

  • 공보관;조대현;윤필환;이정훈;박진영;박익민
    • 한국주조공학회지
    • /
    • 제35권6호
    • /
    • pp.155-162
    • /
    • 2015
  • The effect of Sr addition on mechanical and bio-corrosion properties of as-cast Mg-3wt.%Zn-0.5wt.%Ca-xwt.%Sr (x = 0.3, 0.6, 0.9) alloys were examined for application as biodegradable implant material. The microstructure, mechanical properties and corrosion resistance of the as-cast Mg-Zn-Ca-Sr alloys were characterized by using optical microscopy, scanning electron microscopy, tensile testing and electrochemical measurement in Hank's solution. The as-cast alloys contained ${\alpha}$-Mg and eutectic $Ca_2Mg_6Zn_3$ phases, while the alloys contained ${\alpha}$-Mg, $Ca_2Mg_6Zn_3$ and Mg-Zn-Ca-Sr intermetallic compound when the Sr addition was more than 0.3 wt.%. The yield strength, ultimate tensile strength and elongation increased with the increasing of Sr content up to 0.6 wt.% but decreased in the 0.9 wt.% Sr-added alloy, whereas the corrosion resistance of 0.3 wt.% Sr-added alloy was superior to other alloys. It was thought that profuse Mg-Zn-Ca-Sr intermetallic compound deteriorated both the mechanical properties and corrosion resistance of the as-cast alloy.

치과용 Ni-Cr 합금의 조성에 따른 세라믹의 색차 분석 (Ceramic color differences of dental Ni-Cr alloy by compositional change)

  • 김사임;김태연;김세하;강정규;이정환
    • 대한치과기공학회지
    • /
    • 제43권4호
    • /
    • pp.168-174
    • /
    • 2021
  • Purpose: This study was conducted to investigate alloys spectrophotometrically including yttrium of nickel-chromium (Ni-Cr) alloys, which are used as substitutes for the regulation of beryllium and provide helpful improvements in Ni-Cr alloys. Methods: Four groups of specimens (ZN, ZY, SN and EM) were prepared for analysis. Color parameters were measured with a spectrophotometer, and color difference (∆E*) was calculated. The t-test and one-way analysis of variance test were used to determine significant difference, and the Tukey test was used to identify where the differences were. To measure the spectroscopic reflectivity, the spectroscopic reflectance was measured and converted into CIE L*, a*, b* color system. Results: The ∆E* value of each metal ceramic group after opaque firing of Ni-Cr alloy with and without yttrium was <2, and the total group color difference (∆E*) was below 1 in the dentin ceramic all experimental group. However, the a* and b* values of the metal ceramic groups were higher than that in the lithium disilicate all ceramic group, and the chroma was higher than the natural tooth. The brightness of all experimental groups was similar to that of the shade guide sample. Conclusion: Yttrium added to Ni-Cr alloys showed similar CIE L*, a*, b* values to Ni-Cr alloys that did not contain yttrium, indicating that yttrium had no effect on color in metallic ceramic systems.

바이오매스 및 생분해 촉매제를 이용한 산화생분해 투명 바이오 필름 개발 (Development of Oxo-biodegradable Transparent Bio Films Using Biomass and Biodegradable Catalyst)

  • 유영선;김영태;박대성;최성욱
    • 청정기술
    • /
    • 제23권2호
    • /
    • pp.133-139
    • /
    • 2017
  • 식물로부터 유래하는 바이오매스를 25% 이상 함유하는 바이오 베이스 플라스틱은 탄소배출을 억제하는 효과가 있고, 한정된 자원인 석유의 소비량을 줄일 수 있으며, 산화생분해 첨가제를 추가 적용하면 폐기 후에는 미생물에 의해 생분해되기 때문에 친환경적인 소재로 최근 연구가 활발하다. 본 연구에서는 염화비닐수지에 식물체 유래 가소제, 생분해 촉매제를 첨가하여 생분해성 및 물성변화등을 관찰하였다. 또한 초기 신장율과 인장강도 등의 물성이 우수한 자연에서 분해되는 산화 생분해 투명 바이오 필름을 제조하여 식품포장재로서의 제품 안전성을 시험하였다. 염화비닐 수지와 1차 가소제, 2차 가소제, 방담제, 안정제를 비율에 맞게 투입한 다음, 고속혼합기에서 혼합한 후, 압출성형기를 이용하여 압출한 뒤 냉각 와인더 롤을 통해 두께 $12{\mu}m$의 대조구와 산화생분해 투명 바이오 필름을 제조하였다. 기계적 물성으로 인장강도, 연신율 및 최대하중연신율을 측정하였으며, 생분해 실험을 실시하였다. 식물체 유래 가소제, 생분해 촉매제로 제조된 투명 바이오 필름은 대조구 대비 인장강도 및 연신율이 큰 차이가 없는 것으로 나타났다. 또한 ASTM D 6954-04 방법에 따라 45일간 생분해 테스트를 한 결과 표준물질인 셀룰로오스 분말 대비 61.4%의 생분해를 나타내었다.