• 제목/요약/키워드: Biocorrosion

검색결과 3건 처리시간 0.015초

Effect of biofilm formation, and biocorrosion on denture base fractures

  • Sahin, Cem;Ergin, Alper;Ayyildiz, Simel;Cosgun, Erdal;Uzun, Gulay
    • The Journal of Advanced Prosthodontics
    • /
    • 제5권2호
    • /
    • pp.140-146
    • /
    • 2013
  • PURPOSE. The aim of this study was to investigate the destructive effects of biofilm formation and/or biocorrosive activity of 6 different oral microorganisms. MATERIALS AND METHODS. Three different heat polymerized acrylic resins (Ivocap Plus, Lucitone 550, QC 20) were used to prepare three different types of samples. Type "A" samples with "V" type notch was used to measure the fracture strength, "B" type to evaluate the surfaces with scanning electron microscopy and "C" type for quantitative biofilm assay. Development and calculation of biofilm covered surfaces on denture base materials were accomplished by SEM and quantitative biofilm assay. According to normality assumptions ANOVA or Kruskal-Wallis was selected for statistical analysis (${\alpha}$=0.05). RESULTS. Significant differences were obtained among the adhesion potential of 6 different microorganisms and there were significant differences among their adhesion onto 3 different denture base materials. Compared to the control groups after contamination with the microorganisms, the three point bending test values of denture base materials decreased significantly (P<.05); microorganisms diffused at least 52% of the denture base surface. The highest median quantitative biofilm value within all the denture base materials was obtained with P. aeruginosa on Lucitone 550. The type of denture base material did not alter the diffusion potential of the microorganisms significantly (P>.05). CONCLUSION. All the tested microorganisms had destructive effect over the structure and composition of the denture base materials.

Effects of Iron-Reducing Bacteria on Carbon Steel Corrosion Induced by Thermophilic Sulfate-Reducing Consortia

  • Valencia-Cantero, Eduardo;Pena-Cabriales, Juan Jose
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권2호
    • /
    • pp.280-286
    • /
    • 2014
  • Four thermophilic bacterial species, including the iron-reducing bacterium Geobacillus sp. G2 and the sulfate-reducing bacterium Desulfotomaculum sp. SRB-M, were employed to integrate a bacterial consortium. A second consortium was integrated with the same bacteria, except for Geobacillus sp. G2. Carbon steel coupons were subjected to batch cultures of both consortia. The corrosion induced by the complete consortium was 10 times higher than that induced by the second consortium, and the ferrous ion concentration was consistently higher in iron-reducing consortia. Scanning electronic microscopy analysis of the carbon steel surface showed mineral films colonized by bacteria. The complete consortium caused profuse fracturing of the mineral film, whereas the non-iron-reducing consortium did not generate fractures. These data show that the iron-reducing activity of Geobacillus sp. G2 promotes fracturing of mineral films, thereby increasing steel corrosion.

공장냉각수에서 Biocide (NaOCl)가 생물막 형성 및 금속 부식에 미치는 영향 (Effect of Biocide (NaOCl) in Industrial Cooling Water on Biofilm Formation and Metal Corrosion.)

  • 강용호;박대규
    • 한국미생물·생명공학회지
    • /
    • 제30권1호
    • /
    • pp.86-90
    • /
    • 2002
  • 포항제철소에서 사용하는 살균제와 공장냉각수를 사용하여 실험실에서 생물막 형성과 금속부식에 대한 연구를 수행하였다. 부유성 미생물은 biocide (NaOCl, 0.2% w/v)을 첨가하면 1.5 시간 내에 모두 사멸하였으나, 생물막에 있는 고착성 미생물은 일주일이 지나도 사멸이 되지 않았다. 생물막 형성은 공장냉각수를 고온고압으로 멸균하거나, biocide(NaOCl)를 첨가하였을 경우에는 주황색의 생물막이 형성되었으나, 공장냉각수를 그대로 사용하였을 경우에는 SRB 활성에 의한 흑색(FeS)의 생물막이 형성되었다. 흑색의 생물막이 형성된 곳에서의 금속부식 속도는 주황색의 생물막이 형성된 곳의 금속부식 속도보다 2.3배 더 빨리 진행되었다.