• Title/Summary/Keyword: Biocontrol effect

Search Result 130, Processing Time 0.03 seconds

Antagonistic Effect of Lactobacillus sp. Strain KLF01 Against Plant Pathogenic Bacteria Ralstonia solanacearum (세균성 시들음병에 대한 식물성 유산균(Lactobacillus sp.)의 저해효과)

  • Shrestha, Anupama;Choi, Kyu-Up;Lim, Chun-Keun;Hur, Jang-Hyun;Cho, Sae-Youll
    • The Korean Journal of Pesticide Science
    • /
    • v.13 no.1
    • /
    • pp.45-53
    • /
    • 2009
  • An antagonistic bacterial strain KLF01 was isolated from rhizosphere of tomato and identified to be Lactobacillus sp. by biochemical and genetic analysis. This strain showed antagonism against the used plant pathogenic bacteria like Ralstonia solanacearum, (bacterial wilt), Xanthomonas axonopodis pv. citri, (Citrus canker), Xanthomonas campestris pv. vesicatoria (Bacterial spot), Eriwinia pyrifoliae (Shoot-blight) and Eriwinia carotovora subsp. carotovora group (Potato scab) through agar well diffusion method. In planta test done by drench application of strain KLF01 $(4{\times}10^8 cfu/ml)$ into the experimental plot containing tomato (Solanum lycopersicum L.) cultivar 'Lokkusanmaru' and red pepper (Capsicum annuum L.) cultivar 'Buja' plants, in pot test post-inoculated with the plant pathogenic bacteria, R. solanacearum significantly reduced the disease severity, compared to the non-treated plants.

Purification and Characterization of a Major Extracellular Chitinase from a Biocontrol Bacterium, Paenibacillus elgii HOA73

  • Kim, Yong Hwan;Park, Seur Kee;Hur, Jin Young;Kim, Young Cheol
    • The Plant Pathology Journal
    • /
    • v.33 no.3
    • /
    • pp.318-328
    • /
    • 2017
  • Chitinase-producing Paenibacillus elgii strain HOA73 has been used to control plant diseases. However, the antimicrobial activity of its extracellular chitinase has not been fully elucidated. The major extracellular chitinase gene (PeChi68) from strain HOA73 was cloned and expressed in Escherichia coli in this study. This gene had an open reading frame of 2,028 bp, encoding a protein of 675 amino acid residues containing a secretion signal peptide, a chitin-binding domain, two fibronectin type III domains, and a catalytic hydrolase domain. The chitinase (PeChi68) purified from recombinant E. coli exhibited a molecular mass of approximately 68 kDa on SDS-PAGE. Biochemical analysis indicated that optimum temperature for the actitvity of purified chitinase was $50^{\circ}C$. However, it was inactivated with time when it was incubated at $40^{\circ}C$ and $50^{\circ}C$. Its optimum activity was found at pH 7, although its activity was stable when incubated between pH 3 and pH 11. Heavy metals inhibited this chitinase. This purified chitinase completely inhibited spore germination of two Cladosporium isolates and partially inhibited germination of Botrytis cinerea spores. However, it had no effect on the spores of a Colletotricum isolate. These results indicate that the extracellular chitinase produced by P. elgii HOA73 might have function in limiting spore germination of certain fungal pathogens.

Screening of Multifunctional Bacteria with Biocontrol and Biofertilizing Effects (식물병원진균의 생물적 방제 및 생물비료 활성을 갖는 다기능 세균의 탐색)

  • Kim, Young-Sook;Lee, Myeong-Seok;Yeom, Ji-Hee;Song, Ja-Gyeong;Lee, In-Kyoung;Yun, Bong-Sik
    • The Korean Journal of Mycology
    • /
    • v.39 no.2
    • /
    • pp.126-130
    • /
    • 2011
  • In the course of search for multifunctional microbial inoculants, three Bacillus strains (BS11-1,BS11-2,BS11-3) with biological control and biofertilizing effects were selected. In this study, their ability for solubilization of insoluble phosphate, production of indole-3-acetic acid (IAA), siderophore, and hydrolytic enzymes, and antagonism against phytopathogenic fungi were estimated. All strains produced IAA and siderophore depending on culture time and produced a visible clear zone on agar plate containing 0.5% carboxylmethyl cellulose as a carbon source. Also, these strains exhibited antifungal activities against phytopathogenic fungi, Botrytis cinerea, Cylindrocarpon destructans, Fusarium oxysporum, Rhizoctonia solani, and Phytophthora capsici.

Effect of Bacillus aryabhattai H26-2 and B. siamensis H30-3 on Growth Promotion and Alleviation of Heat and Drought Stresses in Chinese Cabbage

  • Shin, Da Jeong;Yoo, Sung-Je;Hong, Jeum Kyu;Weon, Hang-Yeon;Song, Jaekyeong;Sang, Mee Kyung
    • The Plant Pathology Journal
    • /
    • v.35 no.2
    • /
    • pp.178-187
    • /
    • 2019
  • Plants are exposed to biotic stresses caused by pathogen attack and complex abiotic stresses including heat and drought by dynamic climate changes. To alleviate these stresses, we investigated two bacterial stains, H26-2 and H30-3 in two cultivars ('Ryeokkwang' and 'Buram-3-ho') of Chinese cabbage in plastic pots in a greenhouse. We evaluated effects of bacterial strains on plant growth-promotion and mitigation of heat and drought stresses; the role of exopolysaccharides as one of bacterial determinants on alleviating stresses; biocontrol activity against soft rot caused by Pectobacterium carotovorum subsp. carotovorum PCC21. Strains H26-2 and H30-3 significantly increased fresh weights compared to a $MgSO_4$ solution; reduced leaf wilting and promoted recovery after re-watering under heat and drought stresses. Chinese cabbages treated with H26-2 and H30-3 increased leaf abscisic acid (ABA) content and reduced stomatal opening after stresses treatments, in addition, these strains stably colonized and maintained their populations in rhizosphere during heat and drought stresses. As well as tested bacterial cells, exopolysaccharides (EPS) of H30-3 could be one of bacterial determinants for alleviation of tested stresses in Chinese cabbages, however, the effects were different to cultivars of Chinese cabbages. In addition to bacterial activity to abiotic stresses, H30-3 could suppress incidence (%) of soft rot in 'Buram-3-ho'. The tested strains were identified as Bacillus aryabhattai H26-2 and B. siamensis H30-3 based on 16S rRNA gene sequence analysis. Taken together, H26-2 and H30-3 could be candidates for both plant growth promotion and mitigation of heat and drought stresses in Chinese cabbage.

Antagonistic Effect of Bacillus safensis HC42 on Brown Blotch Mushroom Disease Caused by Pseudomonas agarici (버섯 세균성회색무늬병균 (Pseudomonas agarici) 에 대한 항균활성을 가지는 Bacillus safensis HC42)

  • Lee, Chan-Jung;Lee, Eun-Ji;Park, Hae-Sung;Kong, Won-Sik
    • Journal of Mushroom
    • /
    • v.17 no.1
    • /
    • pp.19-23
    • /
    • 2019
  • A gram-positive bacterium was isolated from the spent substrate of Agaricus bisporus that showed a marked antagonistic activity against Pseudomonas agarici. It was identified as Bacillus safensis HC42 based on its cultural, biochemical, and physiological characteristics, and 16S rRNA sequence. B. safensis HC42 was saprophytic, but not parasitic or pathogenic, in cultivated mushrooms and showed strong inhibition of P. agarici in vitro. Moreover, it showed a control efficacy of 66 % against browning disease caused by P. agarici in Agaricus bisporus. Therefore, B. safensis HC42 may be useful in the future for the development of a biocontrol system.

Preparation of Nanomaterial Wettable Powder Formulations of Antagonistic Bacteria from Phellodendron chinense and the Biological Control of Brown Leaf Spot Disease

  • Zeng, Yanling;Liu, Han;Zhu, Tianhui;Han, Shan;Li, Shujiang
    • The Plant Pathology Journal
    • /
    • v.37 no.3
    • /
    • pp.215-231
    • /
    • 2021
  • Brown leaf spot disease caused by Nigrospora guilinensis on Phellodendron chinense occurs in a large area in Dayi County, Chengdu City, Sichuan Province, China each year. This outbreak has severely reduced the production of Chinese medicinal plants P. chinense and caused substantial economic losses. The bacterial isolate JKB05 was isolated from the healthy leaves of P. chinense, exhibited antagonistic effects against N. guilinensis and was identified as Bacillus megaterium. The following fermentation medium and conditions improved the inhibitory effect of B. megaterium JKB05 on N. guilinensis: 2% glucose, 0.1% soybean powder, 0.1% KCl, and 0.05% MgSO4; initial concentration 6 × 106 cfu/ml, and a 42-h optimal fermentation time. A composite of 0.1% nano-SiO2 JKB05 improved the thermal stability, acid-base stability and ultraviolet resistance by 16%, 12%, and 38.9%, respectively, and nano-SiO2 was added to the fermentation process. The best formula for the wettable powder was 35% kaolin, 4% polyethylene glycol, 8% Tween, and 2% humic acid. The following quality test results for the wettable powder were obtained: wetting time 87.0 s, suspension rate 80.33%, frequency of microbial contamination 0.08%, pH 7.2, fineness 95.8%, drying loss 1.47%, and storage stability ≥83.5%. A pot experiment revealed that the ability of JKB05 to prevent fungal infections on P. chinense increased considerably and achieved levels of control as high as 94%. The use of nanomaterials significantly improved the ability of biocontrol bacteria to control this disease.

Colony Age of Trichoderma azevedoi Alters the Profile of Volatile Organic Compounds and Ability to Suppress Sclerotinia sclerotiorum in Bean Plants

  • Lincon Rafael, da Silva;Leonardo Luis de Barros, Rodrigues;Amanda Silva, Botelho;Bruna Sartorio, de Castro;Paulo Henrique Pereira Costa, Muniz;Maria Carolina Blassioli, Moraes;Sueli Correa Marques, de Mello
    • The Plant Pathology Journal
    • /
    • v.39 no.1
    • /
    • pp.39-51
    • /
    • 2023
  • Common bean (Phaseolus vulgaris L.) is one of the most important crops in human food production. The occurrence of diseases, such as white mold, caused by Sclerotinia sclerotiorum can limit the production of this legume. The use of Trichoderma has become an important strategy in the suppression of this disease. The aim of the present study was to evaluate the effect of volatile organic compounds (VOCs) emitted by Trichoderma azevedoi CEN1241 in five different growth periods on the severity of white mold in common bean. The in vitro assays were carried out in double-plate and split-plate, and the in vivo assays, through the exposure of the mycelia of S. sclerotiorum to the VOCs of T. azevedoi CEN1241 and subsequent inoculation in bean plants. Chemical analysis by gas chromatography coupled to mass spectrometry detected 37 VOCs produced by T. azevedoi CEN1241, covering six major chemical classes. The profile of VOCs produced by T. azevedoi CEN1241 varied according to colony age and was shown to be related to the ability of the biocontrol agent to suppress S. sclerotiorum. T. azevedoi CEN1241 VOCs reduced the size of S. sclerotiorum lesions on bean fragments in vitro and reduced disease severity in a greenhouse. This study demonstrated in a more applied way that the mechanism of antibiosis through the production of volatile compounds exerted by Trichoderma can complement other mechanisms, such as parasitism and competition, thus contributing to a better efficiency in the control of white mold in bean plants.

Effect of agrochemicals on mycelial growth and spore germination of a hyperparasite, Ampelomyces quisqualis 94013 for controlling cucumber powdery mildew (농약이 오이흰가루병 방제용 중복기생균 Ampelomyces quisqualis 94013의 균사생장 및 포자발아에 미치는 영향)

  • Lee, Sang-Yeob;Lee, Sang-Bum;Kim, Yong-Ki;Kim, Hong-Gi
    • The Korean Journal of Pesticide Science
    • /
    • v.8 no.1
    • /
    • pp.71-78
    • /
    • 2004
  • A promising hyperparasite, Ampelomyces quisqualis 94013(AQ94013) was selected as a biological control agent to cucumber powdery mildew caused by Sphaerotheca fusca. Effect of agrochemicals on mycelium growth and spore germination of AQ94013 and effect of spread stickers on hyperparasitical activity of AQ94013 to powdery mildew pathogen were evaluated. Finally it was confirmed that mycelial growth and spore germination of AQ94013 on potato dextrose agar amended with two fungicides for controlling powdery mildew, triadimefon and pyrazophos; five fungicides for controlling downy mildew, dimethomorph, kasugamycin+copper oxychloride, dichlofluanid+copper oxychloride and tribasic copper sulfate; three fungicides for controlling gray mold, iprodione, vinclozolin and procymidone; and six insecticides immidacloprid, teflubenzuron, bifenthrin, ethofenprox, deltamethrin and phenthoate were slightly reduced. Addition of mineral oil in the spore suspension of AQ94013 enhanced 7.9% control value to cucumber powdery mildew.

Toxicology Study of Plant Extract made by Chrysanthemum Cinerariaefolium and Melia Azedarach against Natural Enemies and Plutella Xylostella on Chinese Cabbage (제충국, 멀구슬 추출물의 천적에 대한 독성 및 배추좀나방 방제 효과)

  • Kim, Do-Ik;Kim, Seon-Gon;Ko, Suk-Ju;Kang, Beom-Ryong;Choi, Duck-Soo;Kim, Sang-Soo;Hwang, In-Cheon
    • Korean Journal of Organic Agriculture
    • /
    • v.18 no.4
    • /
    • pp.559-571
    • /
    • 2010
  • This study carried out to evaluate toxicology of Chrysanthemum cinerariaefolium and Melia azedarach against natural enemies in the laboratory, and the diamond backmoth, Plutella xylostella, on chinese cabbage. In the evaluation of the toxicity on predatory mite of phytoseiid Phytoseiulus persimilis, Hypoaspis aculeifer, Amblyseius cucumeris, A. wormersleyi, A. swirskii, the two plant extracts were classified into moderate selective toxicity as recommended by international organization of biocontrol (IOBC). The mummies parasitic natural enemies, Trichogramma evanescens, Aphidius ervi, Aphidius colemani, Eretmocerus eremicus, Encarsia formosa were found to be relatively safe to the plant extracts except Eretemocerus eremicus. In the field study for the control of diamondback moth, Plutella xylostella, single spray of C. cinerariefolium indicated that the control effect dropped from 21th days after the spraying. In the 3 times of spray with 7 says intervals, the mortality effect low at the beginning, but increased to 91.1 at 21 days after spraying. Single spray of M. azedarach showed a 96.7% mortality on P. xylostella at 14 days after spraying, and thereafter decreased. In the three times of spray with 7 days intervals of M. azedarach, the mortality of P. xylostella was 100% at 14 days and its effect was maintained to 28 days after treatment. Consequently, it was suggested that M. azedarach be sprayed before C. cinerariaefolium application.

Chemosensitization of Fusarium graminearum to Chemical Fungicides Using Cyclic Lipopeptides Produced by Bacillus amyloliquefaciens Strain JCK-12

  • Kim, K.;Lee, Y.;Ha, A.;Kim, Ji-In;Park, A.R.;Yu, N.H.;Son, H.;Choi, G.J.;Park, H.W.;Lee, C.W.;Lee, T.;Lee, Y.W.;Kim, J.C.
    • 한국균학회소식:학술대회논문집
    • /
    • 2018.05a
    • /
    • pp.44-44
    • /
    • 2018
  • Fusarium head blight (FHB) caused by infection with Fusarium graminearum leads to enormous losses to crop growers, and may contaminate grains with a number of Fusarium mycotoxins that pose serious risks to human and animal health. Antagonistic bacteria that are used to prevent FHB offer attractive alternatives or supplements to synthetic fungicides for controlling FHB without the negative effects of chemical management. Out of 500 bacterial strains isolated from soil, Bacillus amyloliquefaciens JCK-12 showed strong antifungal activity and was considered a potential source for control strategies to reduce FHB. B. amyloliquefaciens JCK-12 produces several cyclic lipopeptides (CLPs) including iturin A, fengycin, and surfactin. Iturin A inhibits spore germination of F. graminearum. Fengycin or surfactin alone did not display any inhibitory activity against spore germination at concentrations less than 30 ug/ml, but a mixture of iturin A, fengycin, and surfactin showed a remarkable synergistic inhibitory effect on F. graminearum spore germination. The fermentation broth and formulation of B. amyloliquefaciens JCK-12 strain reduced the disease incidence of FHB in wheat. Furthermore, co-application of B. amyloliquefaciens JCK-12 and chemical fungicides resulted in synergistic in vitro antifungal effects and significant disease control efficacy against FHB under greenhouse and field conditions, suggesting that B. amyloliquefaciens JCK-12 has a strong chemosensitizing effect. The synergistic antifungal effect of B. amyloliquefaciens JCK-12 and chemical fungicides in combination may result from the cell wall damage and altered cell membrane permeability in the phytopathogenic fungi caused by the CLP mixtures and subsequent increased sensitivity of F. graminearum to fungicides. In addition, B. amyloliquefaciens JCK-12 showed the potential to reduce trichothecenes mycotoxin production. The results of this study indicate that B. amyloliquefaciens JCK-12 could be used as an available biocontrol agent or as a chemosensitizer to chemical fungicides for controlling FHB disease and as a strategy for preventing the contamination of harvested crops with mycotoxins.

  • PDF