• 제목/요약/키워드: Bioconcentration factor (BCF)

검색결과 38건 처리시간 0.026초

굴포천에 서식하는 어류체내 과불화화합물 농축특성 (Bioconcentration of Perfluorinated Compounds in Fish from Gulpo Stream)

  • 조천래;조재구;엄익춘;이병천;김수진;최경희;윤준헌
    • Environmental Analysis Health and Toxicology
    • /
    • 제25권3호
    • /
    • pp.229-240
    • /
    • 2010
  • During the last decade, perfluorinated compounds (PFCs) have gained more attention due to their toxicity and global distribution. The aim of this study was to examine the distribution and bioaccumulation of perfluorinated compounds (PFCs) in aquatic wildlife effected from a sewage treatment plant. The concentrations of 12 PFCs were determined in water, sediment and fish samples. PFOS were predominantly detected in both ambient environment and fish. In fish, the concentration of PFCs in blood was the highest (i.e., 112.47 ng/mL wet-wt. PFOS) in comparison to other tissues. However, PFOA and PFHpS were highly detected in gonad as 3.87 and 4.58 ng/g wet-wt., respectively. The bioconcentration factor (BCF) of PFCs was greatest in the blood > liver${\cong}$gonad > kidney > gill, and lowest in the muscle tissue. The BCFs of PFUnDA (39,000), PFDA (2,700) and PFOS (1,100) were rated as high values based on wet weight concentration. BCFs increased with increasing the length of the perfluoralkyl chain.

소수성화학물질의 생물축적과 기저독성: 분자크기, 반응속도, 화학적 활성도에 따른 제약 (Bioaccumulation and Baseline Toxicity of Hydrophobic Chemicals: Molecular Size Cutoff, Kinetic Limitations, and Chemical Activity Cut-off)

  • 권정환
    • Environmental Analysis Health and Toxicology
    • /
    • 제23권2호
    • /
    • pp.67-77
    • /
    • 2008
  • It has been observed that the linear relationship between the logarithm of bioconcentration factor (log BCF) of highly hydrophobic chemicals and their log $K_{ow}$ breaks when log $K_{ow}$ becomes greater than 6.0. Consequently, super hydrophobic chemicals were not thought to cause baseline toxicity as a single compound. Researchers often call this phenomenon as "hydrophobicity cutoff" meaning that bioconcentration or corresponding baseline toxicity has a certain cutoff at high log $K_{ow}$ value of hydrophobic organic pollutants. The underlying assumption is that the increased molecular size with increasing hydrophobicity prohibits highly hydrophobic compounds from crossing biological membranes. However, there are debates among scientists about mechanisms and at which log $K_{ow}$ this phenomenon occurs. This paper reviews three hypotheses to explain observed "cutoff": steric effects, kinetic or physiological limitations, and chemical activity cutoff. Although the critical molecular size that makes biological membranes not permeable to hydrophobic organic chemicals is uncertain, size effects in combination with kinetic limitation would explain observed non-linearity between log BCF and log $K_{ow}$. Chemical activity of hydrophobic chemicals generally decreases with increasing melting point at their aqueous solubility. Thus, there may be a chemical activity cutoff of baseline toxicity if there is a critical chemical activity over which baseline effects can be observed.

활성슬러지공정에서 구리의 거동에 관한 연구 (A Study on the Cu2+ Behavior in Activated Sludge Process)

  • 박진도;이학성
    • 한국환경과학회지
    • /
    • 제19권9호
    • /
    • pp.1119-1127
    • /
    • 2010
  • The behavior of copper throughout the whole process of wastewater treatment plant that uses the activated sludge process to treat the wastewater of petrochemical industry that contains low concentration of copper was investigated. Total inflow rate of wastewater that flows into the aeration tank was $697\;m^3$/day with 0.369 mg/L of copper concentration, that is, total copper influx was 257.2 g/day. The ranges of copper concentrations of the influent to the aeration tank and effluent from the one were 0.315 ~ 0.398 mg/L and 0.159 ~ 0.192 mg/L, respectively. The average removal rate of copper in the aeration tank was 50.8 %. The bioconcentration factor (BCF) of copper by microbes in the aeration tank was 3,320. The accumulated removal rate of copper throughout the activated sludge process was 71.3%, showing a high removal ratio by physical and chemical reactions in addition to biosorption by microbes. The concentration of copper in the solid dehydrated by filter press ranged from 74.8 mg/kg to 77.2 mg/kg and the concentration of copper by elution test of waste was 2.690 ~ 2.920 mg/L. It was judged that the copper concentration in dehydrated solid by bioconcentration could be managed with the control of that in the influent.

Di-2-ethylhexyl phthalate의 수서생태계 먹이사슬을 통한 생물축적 및 거동예측 (Fate of Di-2-ethylhexyl Phthalate in Aquatic Food Chain)

  • 김은주
    • 한국환경보건학회지
    • /
    • 제30권3호
    • /
    • pp.264-271
    • /
    • 2004
  • An aquatic food chain was constructed to provide information of bioaccumulation of DEHP as followed: phytoplankton(Scenedesmus subspicatus) ${\rightarrow}$ zooplankton(Daphnia magna) ${\rightarrow}$ fish(Oryzias latipes). After 10 days of exposure to DEHP, the fish and culture water were analyzed for residual concentration of DEHP and BAF(Bioaccumulation Factor) was determined. In addition, BCF(Bioconcentration Factor) was calculated in exposure tank in which fish were only exposed DEHP by culture water. These experiments provide the relative importance between BAF and BCF. In this study, BCF and BAF did not show any significant difference. Another work in this study was model construction and application to investigate the effect of food chain structure to BAF in higher organism (fish). The model constructed in this study considered the biological characteristics of DEHP such as metabolic parameters, as well as the chemical characteristics such as solubility. This model could be used in prediction of bioaccumulation level in dependent of various food chain structures, when the target organisms or chemicals would be changed.

Estimation of Physical-Chemical Property and Environmental Fate of Benzoyl peroxide Using (Q)SAR

  • Kim, Mi-Kyoung;Kim, Su-Hyon;Heekyung Bae;Sanghwan Song;Hyunju Koo;Jeon, Seong-Hwan;Na, Jin-Gyun;Park, Kwangsik;Lee, Moon-Soon
    • 한국환경독성학회:학술대회논문집
    • /
    • 한국환경독성학회 2002년도 추계국제학술대회
    • /
    • pp.154-154
    • /
    • 2002
  • Benzoyl peroxide is a High Production Volume Chemical, which is produced about 1,375 tons/year in Korea as of 2001 survey. The substance is mainly used as initiators in polymerization, catalysts in the plastics industry, bleaching agents for flour and medication for acne vulgaris. The substance is one of seven chemicals of which human health and environmental risks are being assessed by National Institute of Environmental Research (NIER) under the frame of OECD SIDS Program. In this study, Quantitative Structure-Activity Relationships (QSAR) is used for getting adequate information on the physical-chemical property and the environmental fate of this chemical. For the assessment of benzoyl peroxide, models such as MPBPWIN for vapor pressure, KOWWIN for octanol/water partition coefficient, HENRYWIN for Henry's Law constant, AOPWIN for photolysis and BCFWN for bioconcentration factor (BCF) were used. These (Q)SAR model programmes were worked by using the SHILES (Simplified Molecular Input Line Entry System) notations. The physical-chemical properties and the environmental fate of benzoyl peroxide were estimated as followed : vapor pressure =0.00929 Pa, Log Kow = 3.43, Henry's Law constant = 0.00000354 atm-㎥/mole at 25 $^{\circ}C$, the half-life of photodegradation = 3 days, bioconcentration factor (BCF) = 92

  • PDF

다소비 채소작물인 시금치와 당근의 토양 중 엔도설판 흡수이행능 (Plant uptake potential of endosulfan from soil by carrot and spinach)

  • 최근형;정동규;임성진;노진호;류송희;박병준;문병철;김진효
    • Journal of Applied Biological Chemistry
    • /
    • 제60권4호
    • /
    • pp.339-342
    • /
    • 2017
  • Endosulfan은 스톡홀름협약을 통해 잔류성유기오염물질(POPs)로 지정되어 생산 및 사용이 금지되었으나, 여전히 국내 농업환경에서 검출되고 있고, 이로 인한 작물잔류는 사회적으로 큰 문제가 되고 있다. 따라서, 경작지 잔류 endosulfan으로부터 안전한 농산물을 생산하기 위한 작물흡수이행능 평가는 매우 중요하다. 본 연구에서는 문헌조사를 통해 지금까지 보고된 endosulfan의 생물농축계수(BCF)를 조사하였고, 당근과 시금치의 BCF를 시험을 통해 검증하였다. 문헌조사결과 endosulfan의 BCF는 0.002-4.460으로 작물별, 재배지역별 차이가 크게 나타났으며, 실험을 통해 검증한 당근과 시금치의 BCF는 0.285와 0.040-0.047로 각각 나타났다. Endosulfan 중 작물에 주로 잔류하는 이성체는 endosulfan sulfate로 확인되었다.

수도작 작물의 과불소화합물 흡수이행성 (Bioconcentration factor of perfluorochemicals for each aerial part of rice)

  • 최근형;이득영;배지연;노진호;문병철;김진효
    • Journal of Applied Biological Chemistry
    • /
    • 제61권2호
    • /
    • pp.191-194
    • /
    • 2018
  • 국내 주요 식량작물인 벼에서의 잔류성 유기오염물질 잔류평가는 인체 위해성 평가에서 매우 중요하다. 본 연구에서는 과불소화합물 중 perfluorooctanoic acid (PFOA)와 perfluorooctane sulfonic acid (PFOS)의 잔류평가를 벼의 부위별 흡수이행성을 조사하여 수행하였다. 벼는 저농도 오염처리구($1mg\;kg^{-1}$)와 고농도 오염처리구($5mg\;kg^{-1}$)에서 재배 후 현미, 왕겨, 볏짚으로 나누어 잔류량을 조사하였고, 시험결과 현미의 과불소화합물 흡수이행성(0.002-0.006)이 다른 부위에 비해 가장 낮은 것으로 확인되었다. 잔류수준은 볏짚에서 가장 높게 나타났으며, 다음으로 왕겨와 현미 순이었고, 볏짚의 PFOA와 PFOS의 생물농축계수는 최대 1.474와 4.700으로 확인되었다.

Identification of Transition Characteristics and Bio-concentration Factors of Heavy Metal (loid)s in the Selected Perennial Root Medicinal Plants

  • Kim, Won-Il;Noh, Hyun Myung;Hong, Chang-Oh;Kim, Da-Young;Kim, Kwon-Rae;Oh, Kyeong-Seok;Moon, Byeong-Churl;Kim, Ji-Young
    • 한국토양비료학회지
    • /
    • 제50권4호
    • /
    • pp.251-258
    • /
    • 2017
  • This study was conducted to identify transition characteristics of arsenic (As), cadmium (Cd), and lead (Pb) and to calculate bio-concentration factors (BCF) in the three perennial root medicinal plants, namely Codonopsis lanceolata (Deoduck), Platycodon grandiflorum (Balloon flower) and Panax ginseng (Korean ginseng) grown in major medicinal plant producing districts in Korea. Average BCF values ranged from 0.009~0.029 in As, 0.334~1.453 in Cd, and 0.021~0.023 in Pb in three perennial root medicinal plants. The BCF values increased in the order of ginseng (0.029) > deodeok (0.012) > balloon flower (0.009) for As, balloon flower (1.453) > deodeok (0.685) > ginseng (0.334) for Cd, and ginseng (0.023) > deodeok (0.022) > balloon flower (0.021) for Pb. The BCF values calculated in this study will be useful for predicting the uptake of heavy metal (loid)s. Further study on uptake and accumulation mechanism of toxic metal (loid)s by agricultural products is required to assess the human health risk associated with soil contamination.

수경재배에 의한 중금속 (As 및 Cd) 오염토양의 식물상 복원공법 적용 식물종 선별 (Selection of Plant Species for Phytoremediation of Heavy Metal (As and Cd) Contaminated Soil using Hydroponic Culture)

  • 김범준;배범한;김영훈
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제29권1호
    • /
    • pp.28-38
    • /
    • 2024
  • Phytoremediation presents a low-carbon and eco-friendly solution for heavy metal-contaminated soils, which pose great health and environmental risks to humans and ecosystems. A hydroponic culture was used to quantitatively assess the phytoremediation potential of plant species to remediate As or Cd-contaminated soil in field application. This study examined the growth, uptake, and distribution of Cd in the roots and shoots of Phalaris arundinacea and Brassica juncea in hydroponic conditions with Cd concentrations ranging from 0 to 20 mg/L for 10 days. Additionally, Aster koraiensis and Pteris multifida were cultivated in hydroponic conditions containing As concentrations ranging from 0 to 40 mg/L for 10 days. The concentrations of Cd in the above-ground part and root tissues of P. arundinacea and B. juncea reached a maximum of 147.7 and 1926.7 mg/kg-D.W.(Dry Weight), and 351.6 and 11305.5 mg/kg-D.W., respectively. Bioconcentration factor (BCF) for P. arundinacea and B. juncea were 68.9 and 122.3, respectively. Both species exhibited a translocation factor (TF) of less than 0.1, indicating their eligibility for phytostabilization. Aster koraiensis exhibited significant As accumulation of 155.1 and 1306.7 mg/kg D.W. in the above-ground part and root, respectively. However, this accumulation resulted with substantial weight loss and the manifestation of toxic symptoms. P. multifida exhibited higher accumulation of As (345.1 mg/kg-D.W.) in the fronds than in the roots (255.4 mg/kg-D.W.), corresponding to BCF values of 18.6 and 7.6, respectively, and a TF greater than 1.2. A TF value greater than 1.0 indicates that P. multifida is a viable option for phytoextraction.

통영연안 해역의 양식 참굴 (Crassostrea gigas) 의 중금속 농축에 관한 연구 (The study on bioaccumulation of heavy metals in the cultured Pacific oyster, Crassostrea gigas, along the coast of Tongyeong, Korea)

  • 조상만;김영환;정우건
    • 한국패류학회지
    • /
    • 제25권3호
    • /
    • pp.213-222
    • /
    • 2009
  • 해수 및 양식 참굴의 중금속 농도를 분석한 결과 일부 지역에서 간헐적으로 기준치를 초과하였지만 아직까지 뚜렷한 오염 현상은 확인되지 않았다. 그러나 기존 조사한 결과와 비교하면 미량이지만 증가 추세를 보이고 있어 지속적인 감시 및 관리체계 구축이 필요하다고 생각된다. 참굴의 중금속 생물농축계수를 조사한 결과 경남 연안에 서식하는 참굴의 생물농축계수는 청정해역과 오염해역의 중간이행 단계에 해당하였다. 특히 카드뮴의 생물농축계수가 다른 금속에 비해 월등히 높으므로, 이러한 특성을 활용하면 참굴을 Cd 등 중금속 오염 모니터링에 활용할 수 있을 것이다. 특히 카드뮴은 다른 원소들의 생물농축과 가장 밀접한 상관관계가 있는 것으로 조사되었다. 특히 카드뮴과 납이 가장 일정한 상관관계를 나타내는 것은 경남 연안의 해역의 주요 중금속 유입원은 화석연료유의 연소에 의해 유래된 것으로 추정된다. 다차원척도분석법에 의한 수질자료와 중금속 농축경향을 분석한 결과 경남 연안의 양식 참굴의 중금속 유입원은 강우에 의한 일시적 유입보다는 클로로필 a 및 투영도 등과 밀접한 유사성을 지니는 것으로 보아 통영연안에 서식하는 참굴의 중금속 축적은 대부분 먹이연쇄를 통해 이루어지는 것으로 본다.

  • PDF