• Title/Summary/Keyword: Bioclimatic Variables

Search Result 18, Processing Time 0.021 seconds

Distribution and Vegetation Characteristics of Semi-mangrove Hibisus hamabo in Korea (한국에 자생하는 준맹그로브 황근의 분포와 식생 특성)

  • Eun-Ha Park;Bo-Ra Lee;Ju-Eun Yang;Min-Ji Park;Byoung-Ki Choi
    • Korean Journal of Environment and Ecology
    • /
    • v.38 no.4
    • /
    • pp.354-366
    • /
    • 2024
  • Hibiscus hamabo, the northernmost semi-mangrove species in East Asia, presents an important case study for examining climate change's impact on temperate ecosystems and shifts in Korea's subtropical vegetation. This study investigates vegetation characteristics of H. hamabo and evaluates environmental factors influencing their distribution. H. hamabo communities are classified by regional and coastal types. Group I is found in depressed areas within deep bays, cohabiting with herbaceous halophytes. Group II develops along coasts with exposed bedrock or on gravelly coasts, cohabiting with tide tolerance vine shrubs. Group III in Japan encompasses a broader range of coastal environments compared to Korea. A monospecific population with over 100 individuals appeared in this group. this study reveals that precipitation of warmest quarter is the most important environmental factor affecting the distribution of H. hamabo communities. This research analyzes the influence of climatic variables in the distribution of semi-mangrove species, contributing to our understanding of ecological responses to climate change.

Prediction of Changes in Potential Distribution of Warm-Temperate and Subtropical Trees, Myrica rubra and Syzygium buxifolium in South Korea (남한에서 기후변화에 따른 난아열대 목본식물, Myrica rubra와 Syzygium buxifolium의 잠재분포 변화 예측)

  • Eun-Young, Yim;Hyun-kyu, Won;Jong-Seo, Won;Dana, Kim;Hyungjin, Cho
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.4
    • /
    • pp.282-289
    • /
    • 2022
  • Analyzing the impact of climate change on the Korean Peninsula on the forest ecosystem is important for the management of subtropical forest bioresources. In this study, we collected location data and bioclimatic variables of the warm-temperate woody plant species, Myrica rubra and Cyzygium buxifolium, and applied the MaxEnt model based on the collected data to estimate the potential distribution area. Precipitation and temperature seasonality in the warmest quarter were the main environmental factors that determined the distribution of M. rubra, and the main environmental factors for S. buxifolium were precipitation in the warmest quarter and precipitation in the wettest quarter. The results of the MaxEnt model by administrative district, the M. rubra showed an area increase rate of 4.6 - 17.7% in the SSP2-4.5 climate change scenario and 13.8 - 30.5% in the SSP5-8.5 climate change scenario. S. buxifolium showed area increase rates of 4.8 - 32.2% in the SSP2-4.5 climate change scenario and 12.9 - 48.6% in the SSP5-8.5 climate change scenario. This study is meaningful in establishing a database and identifying future potential distribution areas of warm and subtropical plants by applying climate change scenarios.

Analysis and estimation of species distribution of Mythimna seperata and Cnaphalocrocis medinalis with land-cover data under climate change scenario using MaxEnt (MaxEnt를 활용한 기후변화와 토지 피복 변화에 따른 멸강나방 및 혹명나방의 한국 내 분포 변화 분석과 예측)

  • Taechul Park;Hojung Jang;SoEun Eom;Kimoon Son;Jung-Joon Park
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.2
    • /
    • pp.214-223
    • /
    • 2022
  • Among migratory insect pests, Mythimna seperata and Cnaphalocrocis medinalis are invasive pests introduced into South Korea through westerlies from southern China. M. seperata and C. medinalis are insect pests that use rice as a host. They injure rice leaves and inhibit rice growth. To understand the distribution of M. seperata and C. medinalis, it is important to understand environmental factors such as temperature and humidity of their habitat. This study predicted current and future habitat suitability models for understanding the distribution of M. seperata and C. medinalis. Occurrence data, SSPs (Shared Socio-economic Pathways) scenario, and RCP (Representative Concentration Pathway) were applied to MaxEnt (Maximum Entropy), a machine learning model among SDM (Species Distribution Model). As a result, M. seperata and C. medinalis are aggregated on the west and south coasts where they have a host after migration from China. As a result of MaxEnt analysis, the contribution was high in the order of Land-cover data and DEM (Digital Elevation Model). In bioclimatic variables, BIO_4 (Temperature seasonality) was high in M. seperata and BIO_2 (Mean Diurnal Range) was found in C. medinalis. The habitat suitability model predicted that M. seperata and C. medinalis could inhabit most rice paddies.

Predicting the suitable habitat distribution of Conyza sumatrensis under RCP scenarios (RCPs 기후변화 시나리오에 따른 큰망초(Conyza sumatrensis)의 적합 서식지 분포 예측)

  • Myung-Hyun Kim;Soon-Kun Choi;Jaepil Cho;Min-Kyeong Kim;Jinu Eo;So-Jin Yeob;Jeong Hwan Bang
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Global warming has a major impact on the Earth's precipitation and temperature fluctuations, and significantly affects the habitats and biodiversity of many species. Although the number of alien plants newly introduced in South Korea has recently increased due to the increasing frequency of international exchanges and climate change, studies on how climate change affects the distribution of these alien plants are lacking. This study predicts changes in the distribution of suitable habitats according to RCPs climate change scenarios using the current distribution of the invasive alien plant Conyza sumatrensis and bioclimatic variables. C. sumatrensis has a limited distribution in the southern part of South Korea. Isothermality (bio03), the max temperature of the warmest month (bio05), and the mean temperature of the driest quarter (bio09) were found to influence the distribution of C. sumatrensis. In the future, the suitable habitat for C. sumatrensis is projected to increase under RCP 4.5 and RCP 8.5 climate change scenarios. Changes in the distribution of alien plants can have a significant impact on the survival of native plants and cause ecosystem disturbance. Therefore, studies on changing distribution of invasive species according to climate change scenarios can provide useful information required to plan conservation strategies and restoration plans for various ecosystems.

Assessing the Climatic Suitability for the Drywood Termite, Cryptotermes domesticus Haviland (Blattodea: Kalotermitidae), in South Korea (마른나무흰개미(가칭)의 국내 기후적합성 평가)

  • Min-Jung Kim;Jun-Gi Lee;Youngwoo Nam ;Yonghwan Park
    • Korean journal of applied entomology
    • /
    • v.62 no.3
    • /
    • pp.215-220
    • /
    • 2023
  • A recent discovery of drywood termites (Cryptotermes domesticus) in a residential facility in Seoul has raised significant concern. This exotic insect species, which can damage timber and wooden buildings, necessitates an immediate investigation of potential infestation. In this study, we assessed the climatic suitability for this termite species using a species distribution modeling approach. Global distribution data and bioclimatic variables were compiled from published sources, and predictive models for climatic suitability were developed using four modeling algorithms. An ensemble prediction was made based on the mean occurrence probability derived from the individual models. The final model suggested that this species could potentially establish itself in tropical coastal regions. While the climatic suitability in South Korea was generally found to be low, a careful investigation is still warranted due to the potential risk of colonization and establishment of this species.

Tree species migration to north and expansion in their habitat under future climate: an analysis of eight tree species Khyber Pakhtunkhwa, Pakistan

  • Muhammad Abdullah Durrani;Rohma Raza;Muhammad Shakil;Shakeel Sabir;Muhammad Danish
    • Journal of Ecology and Environment
    • /
    • v.48 no.1
    • /
    • pp.96-109
    • /
    • 2024
  • Background: Khyber Pakhtunkhwa government initiated the Billion Tree Tsunami Afforestation Project including regeneration and afforestation approaches. An effort was made to assess the distribution characteristics of afforested species under present and future climatic scenarios using ecological niche modelling. For sustainable forest management, landscape ecology can play a significant role. A significant change in the potential distribution of tree species is expected globally with changing climate. Ecological niche modeling provides the valuable information about the current and future distribution of species that can play crucial role in deciding the potential sites for afforestation which can be used by government institutes for afforestation programs. In this context, the potential distribution of 8 tree species, Cedrus deodara, Dalbergia sissoo, Juglans regia, Pinus wallichiana, Eucalyptus camaldulensis, Senegalia modesta, Populus ciliata, and Vachellia nilotica was modeled. Results: Maxent species distribution model was used to predict current and future distribution of tree species using bioclimatic variables along with soil type and elevation. Future climate scenarios, shared socio-economic pathways (SSP)2-4.5 and SSP5-8.5 were considered for the years 2041-2060 and 2081-2100. The model predicted high risk of decreasing potential distribution under SSP2-4.5 and SSP5-8.5 climate change scenarios for years 2041-2060 and 2081-2100, respectively. Recent afforestation conservation sites of these 8 tree species do not fall within their predicted potential habitat for SSP2-4.5 and SSP5-8.5 climate scenarios. Conclusions: Each tree species responded independently in terms of its potential habitat to future climatic conditions. Cedrus deodara and P. ciliata are predicted to migrate to higher altitude towards north in present and future climate scenarios. Habitat of D. sissoo, P. wallichiana, J. regia, and V. nilotica is practiced to be declined in future climate scenarios. Eucalyptus camaldulensis is expected to be expanded its suitability area in future with eastward shift. Senegalia modesta habitat increased in the middle of the century but decreased afterwards in later half of the century. The changing and shifting forests create challenges for sustainable landscapes. Therefore, the study is an attempt to provide management tools for monitoring the climate change-driven shifting of forest landscapes.

Estimation of potential distribution of sweet potato weevil (Cylas formicarius) and climate change impact using MaxEnt (MaxEnt를 활용한 개미바구미(Cylas formicarius)의 잠재 분포와 기후변화 영향 모의)

  • Jinsol Hong;Heewon Hong;Sumin Pi;Soohyun Lee;Jae Ha Shin;Yongeun Kim;Kijong Cho
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.4
    • /
    • pp.505-518
    • /
    • 2023
  • The key to invasive pest management lies in preemptive action. However, most current research using species distribution models is conducted after an invasion has occurred. This study modeled the potential distribution of the globally notorious sweet potato pest, the sweet potato weevil(Cylas formicarius), that has not yet invaded Korea using MaxEnt. Using global occurrence data, bioclimatic variables, and topsoil characteristics, MaxEnt showed high explanatory power as both the training and test areas under the curve exceeded 0.9. Among the environmental variables used in this study, minimum temperature in the coldest month (BIO06), precipitation in the driest month (BIO14), mean diurnal range (BIO02), and bulk density (BDOD) were identified as key variables. The predicted global distribution showed high values in most countries where the species is currently present, with a significant potential invasion risk in most South American countries where C. formicarius is not yet present. In Korea, Jeju Island and the southwestern coasts of Jeollanam-do showed very high probabilities. The impact of climate change under shared socioeconomic pathway (SSP) scenarios indicated an expansion along coasts as climate change progresses. By applying the 10th percentile minimum training presence rule, the potential area of occurrence was estimated at 1,439 km2 under current climate conditions and could expand up to 9,485 km2 under the SSP585 scenario. However, the model predicted that an inland invasion would not be serious. The results of this study suggest a need to focus on the risk of invasion in islands and coastal areas.

Prediction Model of Pine Forests' Distribution Change according to Climate Change (기후변화에 따른 소나무림 분포변화 예측모델)

  • Kim, Tae-Geun;Cho, Youngho;Oh, Jang-Geun
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.4
    • /
    • pp.229-237
    • /
    • 2015
  • This study aims to offer basic data to effectively preserve and manage pine forests using more precise pine forests' distribution status. In this regard, this study predicts the geographical distribution change of pine forests growing in South Korea, due to climate change, and evaluates the spatial distribution characteristics of pine forests by age. To this end, this study predicts the potential distribution change of pine forests by applying the MaxEnt model useful for species distribution change to the present and future climate change scenarios, and analyzes the effects of bioclimatic variables on the distribution area and change by age. Concerning the potential distribution regions of pine forests, the pine forests, aged 10 to 30 years in South Korea, relatively decreased more. As the area of the region suitable for pine forest by age was bigger, the decreased regions tend to become bigger, and the expanded regions tend to become smaller. Such phenomena is conjectured to be derived from changing of the interaction of pine forests by age from mutual promotional relations to competitive relations in the similar climate environment, while the regions suitable for pine forests' growth are mostly overlap regions. This study has found that precipitation affects more on the distribution of pine forests, compared to temperature change, and that pine trees' geographical distribution change is more affected by climate's extremities including precipitation of driest season and temperature of the coldest season than average climate characteristics. Especially, the effects of precipitation during the driest season on the distribution change of pine forests are irrelevant of pine forest's age class. Such results are expected to result in a reduction of the pine forest as the regions with the increase of moisture deficiency, where climate environment influencing growth and physiological responses related with drought is shaped, gradually increase according to future temperature rise. The findings in this study can be applied as a useful method for the prediction of geographical change according to climate change by using various biological resources information already accumulated. In addition, those findings are expected to be utilized as basic data for the establishment of climate change adaptation policies related to forest vegetation preservation in the natural ecosystem field.