• Title/Summary/Keyword: Biochemical component

Search Result 139, Processing Time 0.036 seconds

NF-${\kappa}$ B Activation and Cyclooxygenase-2 Expression Induced by Toll-Like Receptor Agonists can be Suppressed by Isoliquiritigenin (Isoliquiritigenin의 toll-like receptor agonists에 의해서 유도된 NF-${\kappa}$B 활성화와 cyclooxygenase-2 발현 억제)

  • Park, Se-Jeong;Yang, Seung-Ju;Youn, Hyung-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.220-224
    • /
    • 2009
  • Toll-like receptors(TLRs) are pattern recognition receptors(PRRs) that recognize pathogen-associated molecular patterns(PAMPs) and regulate the activation of innate immunity. All TLR signaling pathways culminate in the activation of NF-${\kappa}$B, leading to the induction of inflammatory gene products such as COX-2. Licorice (Glycyrrhiza uralensis) has been used for centuries as an herbal medicine. Isoliquiritigenin(ILG), a simple chalcone-type flavonoid, is an active component present in licorice and has been used to treat many chronic diseases. However, the mechanism as to how ILG mediates health effects is still largely unknown. In the present report, we present biochemical evidence that ILG inhibits the NF-${\kappa}$B activation induced by TLR agonists and the overexpression of downstream signaling components of TLRs, MyD88, IKK${\beta}$, and p65. ILG also inhibits TLR agonists-induced COX-2 expression. These results suggest that anti-inflammatory effects of ILG are caused by modulation of the immune responses regulated by TLR signaling pathways.

Current research on seed oil biosynthesis (식물 종자지방 합성대사 연구의 최근 동향)

  • Kim, Hyun Uk;Lee, Kyeong-Ryeol;Kim, Eun Ha;Jung, Su-Jin;Roh, Kyung Hee;Kang, Han Chul;Kim, Jong-Bum
    • Journal of Plant Biotechnology
    • /
    • v.41 no.1
    • /
    • pp.10-18
    • /
    • 2014
  • Seed oils (triacylglycerols) of plants are used as a source of essential fatty acids and nutrition for human. In addition, triacylglycerols have been used as industrial raw materials and biofuels. Triacylglycerols are mainly accumulated in seeds by complicated biochemical pathways. Fatty acids are synthesized in the plastids and transported into the endoplasmic reticulum for synthesizing triacylglycerols. It is known for a long time that biosynthesis of triacylglycerols is performed by a de novo synthesis, the Kennedy pathway. However recent studies have revealed that phosphatidylcholine, a major component of cell membrane, plays a central role for triacylglycerols biosynthesis. Phosphatidylcholine is a key regulator determining the relative proportions of unsaturated fatty acids in seeds. It may be a major carrier for the fluxes of fatty acids from the plastid to the endoplasmic reticulum. This finding further suggests that studies of the functions of enzymes involved in the fluxes of fatty acids from phosphatidylcholine to triacylglycerols elucidate the specialized subdomains in the endoplasmic reticulum for triacylglycerols biosynthesis.

Time-based Expression Networks of Genes Related to Cold Stress in Brassica rapa ssp. pekinensis (배추의 저온 스트레스 처리 시간대별 발현 유전자 네트워크 분석)

  • Lee, Gi-Ho;Yu, Jae-Gyeong;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.33 no.1
    • /
    • pp.114-123
    • /
    • 2015
  • Plants can respond and adapt to cold stress through regulation of gene expression in various biochemical and physiological processes. Cold stress triggers decreased rates of metabolism, modification of cell walls, and loss of membrane function. Hence, this study was conducted to construct coexpression networks for time-based expression pattern analysis of genes related to cold stress in Chinese cabbage (Brassica rapa ssp. pekinensis). B. rapa cold stress networks were constructed with 2,030 nodes, 20,235 edges, and 34 connected components. The analysis suggests that similar genes responding to cold stress may also regulate development of Chinese cabbage. Using this network model, it is surmised that cold tolerance is strongly related to activation of chitinase antifreeze proteins by WRKY transcription factors and salicylic acid signaling, and to regulation of stomatal movement and starch metabolic processes for systemic acquired resistance in Chinese cabbage. Moreover, within 48 h, cold stress triggered transition from vegetative to reproductive phase and meristematic phase transition. In this study, we demonstrated that this network model could be used to precisely predict the functions of cold resistance genes in Chinese cabbage.

Studies on the Volatile Flavor Components and Biochemical Characterizations of Artemisia princeps and A argyi (강화쑥의 생화학적 특성 및 휘발성 향기성분에 관한 연구)

  • Choi Byung-Bum;Lee Hye-Jeong;Bang Sun-Kwon
    • The Korean Journal of Food And Nutrition
    • /
    • v.18 no.4
    • /
    • pp.334-340
    • /
    • 2005
  • This study has attempted to examine the effect of Artemisia princeps and A. argyi on liver function-related enzymes in rats with $CCl_4$ adminisration. The activities of serum aspartate aminotransferase(AST), alanine aminotransferase(ALT) and alkaline phosphatase(ALP) from A. princeps were decreased by 33, 23 and $19\%$, respectively, compared to control. The activities of AST, ALT and ALP from A. argyi were decreased by 37, 33 and $26\%$, respectively. Total phenol contents were 10.2 mg/mL and 4.7 mg/mL in A. princeps, and A. argyi, respectively. Also, flavonoid contents were $6.1\;mg\%\;and\;3.6\;mg\%$ in A. princeps, and A. ar효i, respectively. Ethanol extract from A. argyi showed higher electron donating ability toward DPPH than A. princeps. A total of 31 volatile components(3 hydrocarbons, 10 terpenes, 5 carbonyls, 8 alcohols and 5 esters) were indentified in A. princeps, and A. argyi. The major volatile components of A. princeps were $\delta$-3-carene($2.2\%$) in terpenes and nerolidol($0.9\%$) in alcohols. The major volatile components of A. argyi were eugenol($1.4\%$) in alcohols and thyl pentadecanoate($1.1\%$) in esters.

Microbial Diversity and Community Analysis in Lettuce or Cucumber Cultivated Greenhouse Soil in Korea (상추 및 오이 시설재배 토양의 미생물 다양성 분석)

  • Kim, Byung-Yong;Weon, Hang-Yeon;Park, In-Cheol;Lee, Sang-Yeob;Kim, Wan-Gyu;Song, Jae-Kyeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1169-1175
    • /
    • 2011
  • The soil chemical properties, microbial community structures and biochemical properties of lettuce or cucumber-cultivated greenhouse soil samples were analyzed to assess soil health and characterize microbial distribution in 8 locations in Korea. Although most of chemical properties were within the soil management guidelines, the available phosphate, and the contents of exchangeable potassium and calcium were higher than those of recommended levels. In the culture-dependent analysis, 841 bacterial strains were isolated from the greenhouse soils and were identified at the genus level by 16S rRNA gene sequences analysis. The dominant bacterial genera were Bacillus (35.7%), Microbacterium (9.3%), Arthrobacter (5.7%) and Lysobacter (5.1%). The abundance of pseudomonads was highly variable depending on the soil samples. In the culture-independent analysis, soil microbial community was investigated by using phospholipid fatty acid (PLFA) method. Principal component analysis (PCA) showed that a specific grouping for microbial community structure in the greenhouse soils was not observed based on cultivated crops and investigated sites. The results revealed that the greenhouses soils examined are relatively sound managed in terms of soil chemical contents and microbial properties.

Metabolomic analysis of healthy human urine following administration of glimepiride using a liquid chromatography-tandem mass spectrometry

  • Do, Eun Young;Gwon, Mi-Ri;Kim, Bo Kyung;Ohk, Boram;Lee, Hae Won;Kang, Woo Youl;Seong, Sook Jin;Kim, Hyun-Ju;Yoon, Young-Ran
    • Translational and Clinical Pharmacology
    • /
    • v.25 no.2
    • /
    • pp.67-73
    • /
    • 2017
  • Glimepiride, a third generation sulfonylurea, is an antihyperglycemic agent widely used to treat type 2 diabetes mellitus. In this study, an untargeted urinary metabolomic analysis was performed to identify endogenous metabolites affected by glimepiride administration. Urine samples of twelve healthy male volunteers were collected before and after administration of 2 mg glimepiride. These samples were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and then subjected to multivariate data analysis including principal component analysis and orthogonal partial least squares discriminant analysis. Through this metabolomic profiling, we identified several endogenous metabolites such as adenosine 3', 5'-cyclic monophosphate (cAMP), quercetin, tyramine, and urocanic acid, which exhibit significant metabolomic changes between pre- and posturine samples. Among these, cAMP, which is known to be related to insulin secretion, was the most significantly altered metabolite following glimepiride administration. In addition, the pathway analysis showed that purine, tyrosine, and histidine metabolism was affected by pharmacological responses to glimepiride. Together, the results suggest that the pharmacometabolomic approach, based on LC-MS/MS, is useful in understanding the alterations in biochemical pathways associated with glimepiride action.

Plasma metabolites associated with physiological and biochemical indexes indicate the effect of caging stress on mallard ducks (Anas platyrhynchos)

  • Zheng, Chao;Wu, Yan;Liang, Zhen Hua;Pi, Jin Song;Cheng, Shi Bin;Wei, Wen Zhuo;Liu, Jing Bo;Lu, Li Zhi;Zhang, Hao
    • Animal Bioscience
    • /
    • v.35 no.2
    • /
    • pp.224-235
    • /
    • 2022
  • Objective: Cage rearing has critical implications for the laying duck industry because it is convenient for feeding and management. However, caging stress is a type of chronic stress that induces maladaptation. Environmental stress responses have been extensively studied, but no detailed information is available about the comprehensive changes in plasma metabolites at different stages of caging stress in ducks. We designed this experiment to analyze the effects of caging stress on performance parameters and oxidative stress indexes in ducks. Methods: Liquid chromatography tandem mass spectrometry (LC/MS-MS) was used to determine the changes in metabolites in duck plasma at 5 (CR5), 10 (CR10), and 15 (CR15) days after cage rearing and traditional breeding (TB). The associated pathways of differentially altered metabolites were analyzed using Kyoto encyclopedia of genes and genomes (KEGG) database. Results: The results of this study indicate that caging stress decreased performance parameters, and the plasma total superoxide dismutase levels were increased in the CR10 group compared with the other groups. In addition, 1,431 metabolites were detected. Compared with the TB group, 134, 381, and 190 differentially produced metabolites were identified in the CR5, CR10, and CR15 groups, respectively. The results of principal component analysis (PCA) show that the selected components sufficiently distinguish the TB group and CR10 group. KEGG analysis results revealed that the differentially altered metabolites in duck plasma from the CR5 and TB groups were mainly associated with ovarian steroidogenesis, biosynthesis of unsaturated fatty acids, and phenylalanine metabolism. Conclusion: In this study, the production performance, blood indexes, number of metabolites and PCA were compared to determine effect of the caging stress stage on ducks. We inferred from the experimental results that caging-stressed ducks were in the sensitive phase in the first 5 days after caging, caging for approximately 10 days was an important transition phase, and then the duck continually adapted.

Prevalence of Hypertension and Related Risk Factors of the Older Residents in Andong Rural Area (안동 농촌지역 중년 및 노인 주민의 고혈압 유병율과 위험요인 분석)

  • Lee, Hye-Sang;Kwun, In-Sook;Kwon, Chong-Suk
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.7
    • /
    • pp.852-861
    • /
    • 2009
  • This study was performed to assess the risk factors associated with hypertension from Jan/2003 to Feb/2003. The subjects were 1,296 people (496 males, 800 females) aged 40 years and over living in Andong rural area. The hypertensive group was composed of 602 people (272 males, 330 females), who were diagnosed as hypertension ($SBP{\geq}140\;mmHg$ or $DBP{\geq}90\;mmHg$) for the first time at this health examination. The mean anthropometric values of body weight, body fat (%), body mass index (BMI) and waist circumference were significantly higher in hypertensive group than those in normal group. However, the biochemical measurements such as total-cholesterol (TC), triglyceride (TG), HDL-C, LDL-C and fasting blood glucose (FBG) levels did not show any difference between two groups except TG in female. The risk factors of interest in the development of hypertension were analyzed using the multiple logistic regression and expressed as odds ratio (OR) and 95% confidential interval (CI). The results showed that age, sex, obesity, waist circumference, alcohol drinking and meat intakes were risk factors for hypertension. In contrast, cigarette smoking, exercise and the increased fish, fruit and vegetable (except Kimchi) consumption, blood lipid levels and FBG were not linked with the development of hypertension. Nutrient intakes were not associated with hypertension, either. In conclusion, we cannot assert that this study established the existence of the cause-and-effect relationship between nutrient intakes and risk of hypertension in the subjects, but it does suggest that this is a question worth investigating further using a larger scale of case-control study to determine how the past exposure to some nutrient or dietary component relates to the development of the disease.

H2AX Directly Interacts with BRCA1 and BARD1 via its NLS and BRCT Domain Respectively in vitro (H2AX의 BRCA1 NLS domain과 BARD1 BRCT domain 각각과의 in vitro 상호 결합)

  • Bae, Seung-Hee;Lee, Sun-Mi;Kim, Su-Mi;Choe, Tae-Boo;Kim, Cha-Soon;Seong, Ki-Moon;Jin, Young-Woo;An, Sung-Kwan
    • KSBB Journal
    • /
    • v.24 no.4
    • /
    • pp.403-409
    • /
    • 2009
  • H2AX, a crucial component of chromatin, is implicated in DNA repair, cell cycle check point and tumor suppression. The aim of this study was to identify direct binding partners of H2AX to regulate cellular responses to above mechanisms. Literature reviews and bioinformatical tools were attempted intensively to find binding partners of H2AX, which resulted in identifying two potential proteins, breast cancer-1 (BRCA1) and BRCA1-associated RING domain 1 (BARD1). Although it has been reported in vivo that BRCA1 co-localizes with H2AX at the site of DNA damage, their biochemical mechanism for H2AX were however only known that the complex monoubiquitinates histone monomers, including unphosphorylated H2AX in vitro. Therefore, it is important to know whether the complex directly interacts with H2AX, and also which regions of these are specifically mediated for the interaction. Using in vitro GST pull-down assay, we present here that BRCA1 and BARD1 directly bind to H2AX. Moreover, through combinational approaches of domain analysis, fragment clonings and in vitro binding assay, we revealed molecular details of the BRCA1-H2AX and BARD1-H2AX complex. These data provide the potential evidence that each of the BRCA1 nuclear localization signal (NLS) and BARD1 BRCA1 C-terminal (BRCT) repeat domain is the novel mediator of H2AX recognition.