• Title/Summary/Keyword: Biochemical characterization

Search Result 686, Processing Time 0.025 seconds

Purification and Spectroscopic Characterization of the Human Protein Tyrosine Kinase-6 SH3 Domain

  • Koo, Bon-Kyung;Kim, Min-Hyung;Lee, Seung-Taek;Lee, Weon-Tae
    • BMB Reports
    • /
    • v.35 no.3
    • /
    • pp.343-347
    • /
    • 2002
  • The human protein tyrosine kinase-6 (PTK6) polypeptide that is deduced from the cDNA sequence contains a Src homology (SH) 3 domain, SH2 domain, and catalytic domain of tyrosine kinase. We initiated biochemical and NMR characterization of PTK6 SH3 domain in order to correlate the structural role of the PTK6 using circular dichroism and heteronuclear NMR techniques. The circular dichroism data suggested that the secondary structural elements of the SH3 domain are mainly composed of $\beta$-sheet conformations. It is most stable when the pH is neutral based on the pH titration data. In addition, a number of cross peaks at the low-field area of the proton chemical shift of the NMR spectra indicated that the PTK6 SH3 domain retains a unique and folded conformation at the neutral pH condition. For other pH conditions, the SH3 domain became unstable and aggregated during NMR measurements, indicating that the structural stability is very sensitive to pH environments. Both the NMR and circular dichroism data indicate that the PTK6 SH3 domain experiences a conformational instability, even in an aqueous solution.

Isolation and Characterization of Collagen from Skin of Bullfrog, Rana catesbeiana Shaw

  • Qian, Zhong-Ji;Jung, Won-Kyo;Ngo, Nghiep Dai;Lee, Sang-Hoon;Kim, Se-Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.10 no.2
    • /
    • pp.53-59
    • /
    • 2007
  • In order to utilize skin of bullfrog (Rana catesbeiana Shaw) as an alternative source of collagen, we investigated and compared biochemical and physical properties of collagens isolated from bullfrog skin. Two kinds of collagen (BSASC; bullfrog skin acid-soluble collagen and BSPSC; bullfrog skin pepsin-solubilized collagen) were isolated by subsequent treatments with acetic acid and pepsin. The amounts of skin collagen isolated in the subsequent treatments were 7.3% BSASC and 18.2% BSPSC on the basis of lyophilized bullfrog skin weight, respectively. According to the electrophoretic pattern and CM-cellulose column chromatogram, the BSASC has the chain composition of ${\alpha}1{\alpha}2{\alpha}3$ heterotrimer, and the BSPSC consists of two ${\alpha}$ chains of ${\alpha}1{\alpha}2$. In addition, the denaturation temperatures of all collagens tested were ranged from $30^{\circ}C\;to\;38^{\circ}C$. This study suggests that there is a possibility to use bullfrog skin collagen as an alternative source of collagen for industrial purposes, and subsequently it may increase the economical value of the bullfrog.

One-step purification and biochemical characterization of a (s)-stereospecific esterase from Pseudomonas fluorescens KCTC 1767

  • Choe, Gi-Seop;Kim, Ji-Hui;Kim, Ji-Yeon;Kim, Geun-Jung;Yu, Yeon-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.445-448
    • /
    • 2002
  • The Pseudomonas fluorescens KCTC 1767, a selected and identified as potential candidate for stereo-specific resolution of rac-ketoprofen ethyl ester, was systematically investigated in order to induce the high level expression and detailed characterization of the expressing enzyme esterase. We cloned the esterase gene from chromosomal DNA of Pseudomonas fluorescens KCTC 1767 by PCR with two synthetic primers that desinged for simple purification. The recombinant esterase from Pseudomonas fluorescens KCTC 1767 exibited a high conversion rate and enantioselectivity to the (S)-ketoprofen ethyl ester as expected. The enzyme was easily purified to homogeniety by using a metal chelating affinity chromatography as a protein with poly histidine taq, and thus obtained 0.6 mg of protein from a 100 mL culture broth in a single step. The purified enzyme was steadily stable at the pH range from 7.0 to 10. The activity was also retained to be about 70% after the preincubation at $40^{\circ}C$ but over $50^{\circ}C$ lost the activity completely. The molecular mass of the esterase was estimated to be about 43 kDa on SDS-PAGE, and an identical result was also shown in gel filteration chromatography. The specific activity was calculated 27 mM/mg-protein/min by using the rac-ketoprofen ethly ester as a substrate.

  • PDF

Purification and Physiochemical Characterization of Melanin Pigment from Klebsiella sp. GSK

  • Sajjan, Shrishailnath;Kulkarni, Guruprasad;Yaligara, Veeranagouda;Lee, Kyoung;Karegoudar, T.B.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.11
    • /
    • pp.1513-1520
    • /
    • 2010
  • A bacterium capable of producing melanin pigment in the presence of L-tyrosine was isolated from a crop field soil sample and identified as Klebsiella sp. GSK based on morphological, biochemical, and 16S rDNA sequencing. The polymerization of this pigment occurs outside the cell wall, which has a granular structure as melanin ghosts. Chemical characterization of the pigment particles showed then to be acid resistant, alkali soluble, and insoluble in most of the organic solvents and water. The pigment got bleached when subjected to the action of oxidants as well as reductants. This pigment was precipitated with $FeCl_3$, ammoniacal silver nitrate, and potassium ferricynide. The pigment showed high absorbance in the UV region and decreased absorbance when shifted towards the visible region. The melanin pigment was further charecterized by FT-IR and EPR spectroscopies. A key enzyme, 4-hydroxyphenylacetic acid hydroxylase, that catalyzes the formation of melanin pigment by hydroxylation of L-tyrosine was detected in this bacterium. Inhibition studies with specific inhibitors, kojic acid and KCN, proved that melanin is synthesized by the DOPA-melanin pathway.

Molecular identification of dye degrading bacterial isolates and FT-IR analysis of degraded products

  • Khan, Shellina;Joshi, Navneet
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.561-570
    • /
    • 2020
  • In the present study, dye decolorizing bacteria were isolated from water and soil samples, collected from textile industries in Jodhpur province, India. Two bacterial species namely, Bacillus pumilis and Paenibacillus thiaminolyticus were screened and identified based on biochemical characterization. The degradation efficiency of these two microorganisms was compared through optimization of pH, incubation time, initial dye concentration and inoculum size. B. pumilis and P. thiominolyticus were able to degrade 61% and 67% Red HE3B, 81% and 75% Orange F2R, 49.7% and 44.2% Yellow ME4GL and 61.6% and 59.5% Blue RC CT dyes of 800mg/l concentration respectively. The optimum pH and time were found to be 8 within 24 hours. The FT-IR analysis confirmed that microorganisms were able to degrade toxic azo dyes into a non-toxic product as proved through structural modifications to analyze chemical functions in materials by detecting the vibrations that characterize chemical bonds. It is based on the absorption of infrared radiation by the microbial product. Therefore, Bacillus pumilis and Paenibacillus thiaminolyticus are a promising tool for decolorization of dyes due to its potential to effectively decolorize higher azo dye concentrations (10-800 mg/L) and can be exploited for bioremediation.

Solid Phase Extraction of Phospholipids from Brazil Nut (Bertholletia excelsa) and Their Characterization by Mass Spectrometry Analysis

  • Lima, Bruna R. De;Silva, Felipe M.A. Da;Koolen, Hector H.F.;Almeida, Richardson A. De;Souza, Afonso D.L. De
    • Mass Spectrometry Letters
    • /
    • v.5 no.4
    • /
    • pp.115-119
    • /
    • 2014
  • The Brazil nut (Bertholletia excelsa - Lecythidaceae) is considered a product with high economic value, being a food widely appreciated for its nutritional qualities. Although previous studies have reported the biochemical composition of Brazil nut oil, the knowledge regarding the phospholipid composition exhibits a disagreement: the composition of fatty acids present in the structures of phospholipids is reported as being different from the composition of the free fatty acids present in the oil. In this work, solid phase extraction (SPE) was employed to provide a fast extraction of the phospholipids from Brazil nuts, in order to compare the phospholipid profile of the in nature nuts and their fatty acids precursor present in the oil. The major phospholipids were characterized by mass spectrometry approach. Their fragmentation pattern through direct infusion electrospray ionization ion-trap tandem mass spectrometry ($ESI-IT-MS^2$) proved to be useful to unequivocal characterization of these substances. High resolution (HR) experiments through ESI using a quadruple time of flight mass spectrometry (QTOF) system were performed to reinforce the identifications.

Cloning and characterization of a gene encoding ABP57, a soluble auxin-binding protein

  • Lee, Keunpyo;Kim, Myung-Il;Kwon, Yu-Jihn;Kim, Minkyun;Kim, Yong-Sam;Kim, Donghern
    • Plant Biotechnology Reports
    • /
    • v.3 no.4
    • /
    • pp.293-299
    • /
    • 2009
  • Auxin-binding protein 57 ($ABP_{57}$), a soluble auxin-binding protein, acts as a receptor to activate plasma membrane (PM) $H^+-ATPase$. Here, we report the cloning of abp57 and the biochemical characterization of its protein expressed in E. coli. The analysis of internal amino acid sequences of $ABP_{57}$ purified from rice shoots enabled us to search for the corresponding gene in protein DB of NCBI. Further BLAST analysis showed that rice has four abp57-like genes and maize has at least one homolog. Interestingly, Arabidopsis seems to have no homolog. Recombinant $ABP_{57}$ expressed in E. coli caused the activation of PM $H^+-ATPase$ regardless of the existence of IAA. Scatchard analysis showed that the recombinant protein has relatively low affinity to IAA as compared to natural $ABP_{57}$. These results collectively support the notion that the cloned gene is responsible for $ABP_{57}$.

Isolation and Characterization of Bacteria Able to Grow with Phenol at High Concentrations for Bioremediation (생물학적 환경정화를 위한 고농도 페놀에서 생육할 수 있는 세균의 분리 및 특성)

  • 박연규;손홍주
    • Korean Journal of Environmental Biology
    • /
    • v.19 no.1
    • /
    • pp.87-92
    • /
    • 2001
  • For the biological treatment of industrial wastewater containing high concentration of phenol, isolation and characterization of phenol - degrading bacterium were carried out. A bacterial strain P2 capable of degrading phenol was isolated from contaminated soils by enrichment culture technique and identified as the genus Rhodococcus by morphological, cultural, biochemical characteristics, and Biolog system. The optimal medium composition and cultural conditions for the growth and degradation of phenol by Rhodococcus sp. P2 were 0.1% of (NH$_4$)$_2$SO$_4$, 0.2% of KH$_2$PO$_4$, 0.25% of Na$_2$HPO$_4$ㆍ12$H_2O$, 0.2% of MgSO$_4$ㆍ7$H_2O$, and 0.008% of CaC1$_2$ㆍ2$H_2O$ along with initial pH 8.5 at 3$0^{\circ}C$. Rhodococcus sp. P2 could grow with phenol as the sole carbon source up to 1,800 ppm in batch cultures, but did not grow in medium containing above 2,000 ppm of phenol. When 800 ppm phenol was given in the optimal media, Rhodococcus sp. P2 completely degraded it within 24 h. Meanwhile, 1,800 ppm of phenol was degraded within 9 days. Rhodococcus sp. P2 could utilize toluene, n-hexane, xylene and benzene as sole carbon source .

  • PDF

Isolation and Characterization of Bacillus thuringiensis Strain BT-209 producing Cuboidal $\delta$ -endotoxin crystals

  • Jung, Yong-Chul;Kim, Sung-uk;Son, Kwang-Hee;Lee, Hyung-Hoan;Bok, Song-Hae
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.138-142
    • /
    • 1995
  • Bacillus thuringiensis strain BT-209 was isolated from a soybean grain dust sample in Korea. The strain BT-209 produced two different sizes of cuboidal crystals and one spore in the cell. In the biochemical characterization, the strain BT-209 showed negative reactions on the production of urease, and the utilization of citrate and sucrose. Examination of its antibiotic resistance revealed that while the strain BT-209 showed higher sensitivity than B. thuringiensis subsp. kurstaki HD-1 to ampicillin, bacitracin, chlortetracycline, gentamycin, neomycin, penicillin G, tetracycline and tobramycin, it was more resistant to methicillin than B. thuringiensis subsp. kurstaki HD-1. The $\delta$-endotoxin crystal of strain BT-209 consisted of three proteins with apparent molecular weights of appoximately 148, 135 and 62 kDa on a 10% SDS-PAGE. The strain BT-209 had at least eight different plasmids with sizes of 4.1, 5.2, 6.3, 8.6, 14.6, 24.5, 67.6 and 77.6 Kb. The strain BT-209 showed strong lethalities of 70% and 87% against Bombyx mori and Hyphantria cunea larvae. at 72 h, respectively.

  • PDF

A New Raw-Starch-Digesting ${\alpha}$-Amylase: Production Under Solid-State Fermentation on Crude Millet and Biochemical Characterization

  • Maktouf, Sameh;Kamoun, Amel;Moulis, Claire;Remaud-Simeon, Magali;Ghribi, Dhouha;Chaabouni, Semia Ellouz
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.489-498
    • /
    • 2013
  • A new Bacillus strain degrading starch, named Bacillus sp. UEB-S, was isolated from a southern Tunisian area. Amylase production using solid-state fermentation on millet, an inexpensive and available agro-resource, was investigated. Response surface methodology was applied to establish the relationship between enzyme production and four variables: inoculum size, moisture-to-millet ratio, temperature, and fermentation duration. The maximum enzyme activity recovered was 680 U/g of dry substrate when using $1.38{\times}10^9$ CFU/g as inoculation level, 5.6:1 (ml/g) as moisture ratio (86%), for 4 days of cultivation at $37^{\circ}C$, which was in perfect agreement with the predicted model value. Amylase was purified by Q-Sepharose anion-exchange and Sephacryl S-200 gel filtration chromatography with a 14-fold increase in specific activity. Its molecular mass was estimated at 130 kDa. The enzyme showed maximal activity at pH 5 and $70^{\circ}C$, and efficiently hydrolyzed starch to yield glucose and maltose as end products. The enzyme proved its efficiency for digesting raw cereal below gelatinization temperature and, hence, its potentiality to be used in industrial processes.