• Title/Summary/Keyword: Biobutanol

Search Result 8, Processing Time 0.021 seconds

Production of Biobutanol by Clostridium beijerinckii from Water Hyacinth (부레옥잠을 이용한 Clostridium beijerinckii의 Biobutanol 생산)

  • Park, Bong-Je;Park, Hye Min;Yun, Hyun Shik
    • KSBB Journal
    • /
    • v.31 no.1
    • /
    • pp.79-84
    • /
    • 2016
  • Biofuel has been considered as promising renewable energy to solve various problems that result from increasing usage of fossil fuels since the early 20th century. In terms of chemical and physical properties as fuel, biobutanol has more merits than bioethanol. It could replace gasoline for transportation and industrial demand is increasing significantly. Production of butanol can be achieved by chemical synthesis or by microbial fermentation. The water hyacinth, an aquatic macrophyte, originated from tropical South America but is currently distributed all over the world. Water hyacinth has excellent water purification capacity and it can be utilized as animal feed, organic fertilizer, and biomass feedstock. However, it can cause problems in the rivers and lakes due to its rapid growth and dense mats formation. In this study, the potential of water hyacinth was evaluated as a lignocellulosic biomass feedstock in biobutanol fermentation by using Clostridium beijerinckii. Water hyacinth was converted to water hyacinth hydrolysate medium through pretreatment and saccharification. It was found that productivity of water hyacinth hydrolysate medium on biobutanol production was comparable to general medium.

A Review on Spray Characteristics of Biobutanol and Its Blended Fuels in IC engines

  • No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.21 no.3
    • /
    • pp.144-154
    • /
    • 2016
  • This review will be concentrated on the spray characteristics of biobutanol and its blends fuels in internal combustion engines including compression ignition, spark ignition and gas turbine engines. Butanol can be produced by fermentation from sucrose-containing feedstocks, starchy materials and lignocellulosic biomass. Among four isomers of butanol, n-butanol and iso-butanol has been used in CI and SI engines. This is due to higher octane rating and lower water solubility of both butanol compared with other isomers. The researches on the spray characteristics of neat butanol can be classified into the application to CI and SI engines, particularly GDI engine. Two empirical correlations for the prediction of spray angle for butanol as a function of Reynolds number was newly suggested. However, the applicability for the suggested empirical correlation is not yet proved. The butanol blended fuels used for the investigation of spray characteristics includes butanol-biodiesel blend, butanol-gasoline blend, butano-jet A blend and butanol-other fuel blends. Three blends such as butanol/ethanol, butanol/heptane and butanol/heavy fuel oil blends are included in butanol-other fuel blends. Even though combustion and emission characteristics of butanol/diesel fuel blend in CI engines were broadly investigated, study on spray characteristics of butanol/diesel fuel blend could not be found in the literature. In addition, the more study on the spray characteristics of butanol /gasoline blend is required.

Acetone, Butanol, Ethanol Production from Undaria pinnatifida Using Clostridium sp. (Clostridium 종을 이용한 미역으로부터 아세톤, 부탄올, 에탄올 (ABE) 생산)

  • Kwon, Jeong Eun;Gwak, Seung Hee;Kim, Jin A;Ryu, Ji A;Park, Sang Eon;Baek, Yoon Seo;Heo, A Jeong;Kim, Sung-Koo
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.3
    • /
    • pp.236-242
    • /
    • 2017
  • The conversion of marine biomass to renewable energy has been considered an alternative to fossil fuels. Butanol, in particular, can be used directly as a fuel. In this experiment, the brown alga Undaria pinnatifida was selected as a biomass for biobutanol production. Hyper thermal (HT) acid hydrolysis was used as an acid hydrolysis method to produce monosaccharides. The optimal pretreatment conditions for U. pinnatifida were determined as slurry with 10% (w/v) U. pinnatifida content and 270 mM $H_2SO_4$, and heating at $160^{\circ}C$ for 7.5 min. Enzymatic saccharification was carried out with Celluclast 1.5 L, Viscozyme L, and Ultraflo Max. The optimal saccharification condition was 12 U/ml Viscozyme L. Fermentations were carried out for the production of acetone, butanol, and ethanol by Clostridium acetobutylicum KCTC 1724, Clostridium beijerinckii KCTC 1785, and Clostridium tyrobutyricum KCTC 5387. The fermentations were carried out using a pH-control. The optimal ABE fermentation condition determined using C. acetobutylicum KCTC 1724 adapted to 160 g/l mannitol. An ABE concentration of 9.05 g/l (0.99 g/l acetone, 5.62 g/l butanol, 2.44 g/l ethanol) was obtained by the consumption of 24.14 g/l monosaccharide with $Y_{ABE}$ of 0.37 in pH 5.0.

Characteristics of xylose and glucuronic acid at concentrated sulfuric acid hydrolysis (진한 황산 가수분해 반응조건에서 xylose와 glucuronic acid의 반응 특성)

  • Cho, Dae-Haeng;Kim, Yong-Hwan;Park, Jong-Moon;Sim, Jae-Hoon;Kim, Byung-Ro;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.3
    • /
    • pp.9-14
    • /
    • 2012
  • Formed fermentation inhibitors during acid saccharification leads to poor alcohol production based on lignocellulosic bio-alcohol production process. In this work, it is focused on the formation of fermentation inhibitors from xylan, which is influenced by reaction tempearature and time of acidic sacharifiaction of xylose and glucuronic acid. In second step of concentrated acid hydrolysis, part of xylose and glucuronic acid was converted to furfuraldehyde and formic acid by dehydration and rearrangement reactions. Furfural was form from xylose, which was highly sensitive to reaction temperature. Formic acid was come from both xylose and glucuronic acid, which supposed to main inhibitor in biobutanol fermentation. Reaction temperature of second hydrolysis was main variables to control the furfural and formic acid generation. Careful control of acid saccharification can reduce generation of harmful inhibitors, especially second step of concentrated sulfuric acid hydrolysis process.

Study on Effect of Phase Separation of Bioethanol Blends Fuel by Water Contents (수분 함량에 따른 바이오에탄올혼합 연료유의 상 분리 영향성에 관한 연구)

  • KIM, JAE-KON;JEON, CHEOl-HWAN;MIN, KYONG-IL;KIM, SHIN;PARK, CHEON-KYU;HA, JONG-HAN
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.6
    • /
    • pp.712-720
    • /
    • 2016
  • When bioethanol and water are mixed at a proper ratio, phase separation can occur because of the immiscibility of biobutanol with water. Phase separation in bioethanol blends fuels is a major problem for gasoline vehicle users due to effect of octane number and component corrosion. Thus, in this study, the phase separation of bioethanol was examined effect of bioethanol blends (E3 (3 vo.% bioethanol in gasoline), E5 and E10) in presence of water. The effect were evaluated behavior with phase separation test, simulation test of fuel tank in gas station according to water addition volume and it was investigated change of water content, bioethanol content and octane number for gasoline phase in bioethanol blends (E3, E5 and E10) every 1 week after water addition. The E3 occurred phase separation more easily than the E5 and E10 in small water contents because solubility of water on ethanol content difference in gasoline-ethanol. It was kept a initial level of water content, bioethanol content, and octane number by repeated sample replacing in simulation test of fuel tank.

The Characteristics Study of Vehicle Evaporative Emission and Performance according to the Bio-Fuel Application (바이오 연료 적용에 따른 차량 증발가스 및 성능특성 연구)

  • Noh, Kyeong-Ha;Lee, Min-Ho;Kim, Ki-Ho;Kim, Sin;Park, Cheon-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.874-882
    • /
    • 2017
  • As the interest on the air-pollution is gradually rising up at home and abroad, automotiv e and fuel researchers have been working on the exhaust emission reduction from vehicles through a lot of approaches, which consist of new engine design, innovative after-treatment systems, using clean (eco-friendly alternative) fuels and fuel quality improvement. This research has brought forward three main issues : evaporative, performance, air pollution. In addition, researcher studied the environment problems of the bio-ethanol, bio-butanol, bio-ETBE (Ethyl Tertiary Butyl Ether), MTBE (Methyl Tert iary Butyl Ether) fuel contained in the fuel as octane number improver. The researchers have many dat a about the health effects of ingestion of octane number improver. However, the data support the con clusion that octane number improver is a potential human carcinogen at high doses. Based on the bio-fuel and octane number improver types (bio-ethanol, bio-butanol, bio-ETBE, MTBE), this paper dis cussed the influence of gasoline fuel properties on the evaporative emission characteristics. Also, this p aper assessed the acceleration and power performance of gasoline vehicle for the bio-fuel property. As a result of the experiment, it was found that all the test fuels meet the domestic exhaust gas standards, and as a result of measurement of the vapor pressure of the test fuels, the bio - ethanol : 15 kPa and the biobutanol : 1.6 kPa. thus when manufacturing E3 fuel, Increasing the biobutanol content reduces evaporation gas and vapor pressure. In addition, Similar accelerating and powering performance was shown for the type of biofuel and when bio-butanol and bio-ethanol were compared accelerated perf ormance was improved by about 3.9% and vehicle power by 0.8%.

Development of the Dynamic Model for the Metabolic Network of Clostridium acetobutylicum (Clostridium acetobutylicum의 대사망의 동적모델 개발)

  • Kim, Woohyun;Eom, Moon-Ho;Lee, Sang-Hyun;Choi, Jin-Dal-Rae;Park, Sunwon
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.226-232
    • /
    • 2013
  • To produce biobutanol, fermentation processes using clostridia that mainly produce acetone, butanol and ethanol are used. In this work, a dynamic model describing the metabolic reactions in an acetone-butanol-ethanol (ABE)-producing clostridium, Clostridium acetobutylicum ATCC824, was proposed. To estimate the 58 kinetic parameters of the metabolic network model with experimental data obtained from a batch fermentor, we used an efficient optimization method combining a genetic algorithm and the Levenberg-Marquardt method because of the complexity of the metabolism of the clostridium. For the verification of the determined parameters, the developed metabolic model was evaluated by experiments where genetically modified clostridium was used and the initial concentration of glucose was changed. Consequently, we found that the developed kinetic model for the metabolic network was considered to describe the dynamic metabolic state of the clostridium sufficiently. Thus, this dynamic model for the metabolic reactions will contribute to designing the clostridium as well as the fermentor for higher productivity.

Solid-Liquid Equilibria and Excess Molar Volumes, Refractive Indices and Deviation in Viscosity for Binary Systems of C3-C6 Carboxylic Acids (Carboxylic acid 이성분계의 고-액 상평형과 과잉물성, 굴절률 및 점도 편차)

  • Gu, Ji-Eun;Oh, Ha-Young;Park, So-Jin
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.78-84
    • /
    • 2019
  • Recently, bio-butanol is being promoted as environmentally friendly sustainable energy. However, some problems are still obstacle for commercialization of bio-butanol: the development of cheap biomass and enhancement of fermentation ratio and preparation of economical separation process for fermented products. In the conventional ABE biobutanol fermentation process, organic acids with acetone, butanol, and ethanol are produced. Therefore, it is necessary to study phase equilibrium data and mixture properties for the design and operation of separation process. However, there is lack of design data for organic acids except acetic acid contained system. In this study, therefore, binary solid-liquid equilibria (SLE) and mixture properties: the excess molar volumes ($V^E$), molar refraction deviation (${\Delta}R$) and deviation of viscosity (${\Delta}v$) at 298.15 for $C_3-C_6$ organic acid were reported. The experimental SLE data were correlated with the NRTL and UNIQUAC activity coefficient model with less than 0.5 K of root mean square deviation (RMSD). In addition, $V^E$, ${\Delta}R$ and ${\Delta}v$ for the same binary systems were satisfactorily fitted using the Redlich-Kister polynomial with less than ca. 0.004 standard deviation.