• Title/Summary/Keyword: Bioactive treatment

Search Result 384, Processing Time 0.039 seconds

Changes in color stability and antioxidant properties of dietary pigments after thermal processing at high pressures (고온가압 처리에 의한 식용색소의 화학안정성 및 산화방지활성 변화)

  • Oh, Boeun;Kim, Kunhee;Hong, Jungil
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.3
    • /
    • pp.257-263
    • /
    • 2022
  • Various dietary pigments are added to processed foods to improve their sensory and commercial properties. In this study, autoclave sterilization (121℃ for 15 min at 15 psi) was performed on 34 food pigments, and changes in their color stability and antioxidant activity were analyzed. The autoclaving process drastically reduced the peak color intensities of water-soluble paprika and beet red (BR) by ~90%. Turmeric oleoresin (TO), water-soluble β-carotene, and grape skin color were also unstable and showed a remaining color intensity of 45-60%. The colors of all the synthetic pigments tested were stable under this process. The scavenging activities of BR and paprika against ABTS, DPPH, and AAPH radicals decreased significantly, whereas those of TO were enhanced after the autoclaving treatment. The results suggest that the chemical and bioactive properties of certain dietary pigments are affected by the autoclaving process, and this phenomenon should be considered during food processing.

Major ginsenosides from Panax ginseng promote aerobic cellular respiration and SIRT1-mediated mitochondrial biosynthesis in cardiomyocytes and neurons

  • Huang, Qingxia;Lou, Tingting;Lu, Jing;Wang, Manying;Chen, Xuenan;Xue, Linyuan;Tang, Xiaolei;Qi, Wenxiu;Zhang, Zepeng;Su, Hang;Jin, Wenqi;Jing, Chenxu;Zhao, Daqing;Sun, Liwei;Li, Xiangyan
    • Journal of Ginseng Research
    • /
    • v.46 no.6
    • /
    • pp.759-770
    • /
    • 2022
  • Background: Aerobic cellular respiration provides chemical energy, adenosine triphosphate (ATP), to maintain multiple cellular functions. Sirtuin 1 (SIRT1) can deacetylate peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) to promote mitochondrial biosynthesis. Targeting energy metabolism is a potential strategy for the prevention and treatment of various diseases, such as cardiac and neurological disorders. Ginsenosides, one of the major bioactive constituents of Panax ginseng, have been extensively used due to their diverse beneficial effects on healthy subjects and patients with different diseases. However, the underlying molecular mechanisms of total ginsenosides (GS) on energy metabolism remain unclear. Methods: In this study, oxygen consumption rate, ATP production, mitochondrial biosynthesis, glucose metabolism, and SIRT1-PGC-1α pathways in untreated and GS-treated different cells, fly, and mouse models were investigated. Results: GS pretreatment enhanced mitochondrial respiration capacity and ATP production in aerobic respiration-dominated cardiomyocytes and neurons, and promoted tricarboxylic acid metabolism in cardiomyocytes. Moreover, GS clearly enhanced NAD+-dependent SIRT1 activation to increase mitochondrial biosynthesis in cardiomyocytes and neurons, which was completely abrogated by nicotinamide. Importantly, ginsenoside monomers, such as Rg1, Re, Rf, Rb1, Rc, Rh1, Rb2, and Rb3, were found to activate SIRT1 and promote energy metabolism. Conclusion: This study may provide new insights into the extensive application of ginseng for cardiac and neurological protection in healthy subjects and patients.

Increased Antioxidants of Agastache rugosa by the Night Interruption Time (야파(night interruption)처리에 의한 배초향의 항산화 물질 증가)

  • Kim, Sungjin;Noh, Seungwon;Park, Jongseok
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.319-324
    • /
    • 2022
  • The objective of this study was to determine the proper night interruption of photoperiods and dark periods for accumulating bioactive compounds of Agastache rugosa without decreasing plant growth. Five-week-old seedlings were transplanted in a DFT system with white LEDs. A. rugosa was treated with night interruption time treatments of 18:1:2:3, 18:2:2:2, 18:3:2:1 (light:dark:light:dark), and 20:4 (control) for 4 weeks. There were no significant differences except for leaf length, leaf width, and the number of flowers. The content of antioxidants in the shoot of A. rugosa was high in tilianin and acacetin, and the content of rosmarinic acid (RA) was significantly higher in the underground part. The RA content per dry weight of A. rugosa was 47.92 and 51.46% higher than that of the control in 18:1:2:3 and 18:2:2:2, and tilianin and acactin per dry weight were significantly higher in 18:3:2:1. There was no significant difference in growth due to the same day light integral, but 18:2:2:2 showed high total polyphenol contents. Therefore, it is thought that the effect of increasing secondary metabolites of A. rugosa without degradation of growth can be expected through night interruption treatment in plant factory cultivation systems using artificial light.

Growth performance, carcass traits, muscle fiber characteristics and skeletal muscle mRNA abundance in hair lambs supplemented with ferulic acid

  • Pena-Torres, Edgar Fernando;Castillo-Salas, Candelario;Jimenez-Estrada, Ismael;Muhlia-Almazan, Adriana;Pena-Ramos, Etna Aida;Pinelli-Saavedra, Araceli;Avendano-Reyes, Leonel;Hinojosa-Rodriguez, Cindy;Valenzuela-Melendres, Martin;Macias-Cruz, Ulises;Gonzalez-Rios, Humberto
    • Journal of Animal Science and Technology
    • /
    • v.64 no.1
    • /
    • pp.52-69
    • /
    • 2022
  • Ferulic acid (FA) is a phytochemical with various bioactive properties. It has recently been proposed that due to its phytogenic action it can be used as an alternative growth promoter additive to synthetic compounds. The objective of the present study was to evaluate the growth performance, carcass traits, fiber characterization and skeletal muscle gene expression on hair-lambs supplemented with two doses of FA. Thirty-two male lambs (n = 8 per treatment) were individually housed during a 32 d feeding trial to evaluate the effect of FA (300 and 600 mg d-1) or zilpaterol hydrochloride (ZH; 6 mg d-1) on growth performance, and then slaughtered to evaluate the effects on carcass traits, and muscle fibers morphometry from Longissimus thoracis (LT) and mRNA abundance of β2-adrenergic receptor (β2-AR), MHC-I, MHC-IIX and IGF-I genes. FA increased final weight and average daily gain with respect to non-supplemented animals (p < 0.05). The ZH supplementation increased LT muscle area, with respect to FA doses and control (p < 0.05). Cross-sectional area (CSA) of oxidative fibers was larger with FA doses and ZH (p < 0.05). Feeding ZH increased mRNA abundance for β2-AR compared to FA and control (p < 0.05), and expression of MHC-I was affected by FA doses and ZH (p < 0.05). Overall, FA supplementation of male hair lambs enhanced productive variables due to skeletal muscle hypertrophy caused by MHC-I up-regulation. Results suggest that FA has the potential like a growth promoter in lambs.

Plant-derived Anti-HIV Natural Products: A Review of Recent Research (천연물의 항 HIV 효능에 대한 최신 연구동향)

  • Karadeniz, Fatih;Oh, Jung Hwan
    • Journal of Life Science
    • /
    • v.32 no.9
    • /
    • pp.734-741
    • /
    • 2022
  • Currently, around 40 million people worldwide are living with human immunodeficiency virus (HIV) infection making HIV a critical global health risk. Present therapies for HIV infection consist of drug cocktails that target different steps of the HIV life cycle to prevent infection, replication, and release of the virus. Due to its mutating nature, drug resistance coupled with side-effects of long-term drug use, novel strategies, and pharmaceuticals to treat and manage HIV infection are constant needs and continuously being studied. Plants allocate a major repertoire of chemical diversity and are therefore regarded as an important source of new bioactive agents that can be utilized against HIV. Since the early 1990s, upon recommendations of the World Health Organization, numerous studies reported phytochemicals from different structural classes such as flavonoids, coumarins, tannins and terpenes with strong inhibitory effects against HIV infection. The present review gathered and presented recent research (2021-present) on plant extracts and phytochemicals that exhibit anti-HIV properties with the aim of providing insights into future studies where ethnomedical and underutilized plant sources may yield important natural products against HIV. Considering the relation and importance of HIV treatment with current viral infection risks such as SARS-CoV-2, screening plants for anti-HIV agents is an important step towards the discovery of novel antivirals.

Antioxidant Properties of Peptides Extracted from Tenebrio molitor Larvae (갈색거저리 유충에서 추출한 펩타이드의 항산화 특성)

  • Sam Woong Kim;Sang Wan Gal;Won-Jae Chi;Woo Young Bang;So Jeong Park;Tae Wan Kim;Kyu Ho Bang
    • Journal of Life Science
    • /
    • v.33 no.5
    • /
    • pp.383-390
    • /
    • 2023
  • The goal of this study was to identify new bioactive peptides in extracts derived from Tenebrio molitor (T. molitor) larvae for the development of functional foods. After extraction from freeze-dried T. molitor larvae with various solvents on time course, the extracts showed the highest 2,2,1-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity at 5 and 10 hr per total protein and solid contents, respectively. When the water extract was fractionated, a high methanol concentration led to a reduced level of high-molecular-weight proteins in the centrifugal supernatant, whereas increased DPPH activity in the supernatants suggests low-molecular-weight peptides may mediate antioxidant activity in the supernatant. Most of the organic solvent partitions, excluding butanol, showed similar activities in the water phases, and the organic solvent partition fraction exhibited a 28~44% decrease in activity following heat treatment, implying that some components in the fraction become unstable in the presence of heat. The addition of proteinase K to the water extract increased DPPH activity by 10~20%, suggesting that peptides, when released from total proteins, partially increase antioxidant activity. Therefore, we suggest that the antioxidants in T. molitor larval extracts make them a potential source of functional animal food.

Antioxidant effect of ergothioneine on in vitro maturation of porcine oocytes

  • Ji-Young Jeong;Lian Cai;Mirae Kim;Hyerin Choi;Dongjin, Oh;Ali Jawad;Sohee Kim;Haomiao Zheng;Eunsong Lee;Joohyeong Lee;Sang-Hwan, Hyun
    • Journal of Veterinary Science
    • /
    • v.24 no.2
    • /
    • pp.24.1-24.13
    • /
    • 2023
  • Background: Ergothioneine (EGT) is a natural amino acid derivative in various animal organs and is a bioactive compound recognized as a food and medicine. Objectives: This study examined the effects of EGT supplementation during the in vitro maturation (IVM) period on porcine oocyte maturation and subsequent embryonic development competence after in vitro fertilization (IVF). Methods: Each EGT concentration (0, 10, 50, and 100 μM) was supplemented in the maturation medium during IVM. After IVM, nuclear maturation, intracellular glutathione (GSH), and reactive oxygen species (ROS) levels of oocytes were investigated. In addition, the genes related to cumulus function and antioxidant pathways in oocytes or cumulus cells were investigated. Finally, this study examined whether EGT could affect embryonic development after IVF. Results: After IVM, the EGT supplementation group showed significantly higher intracellular GSH levels and significantly lower intracellular ROS levels than the control group. Moreover, the expression levels of hyaluronan synthase 2 and Connexin 43 were significantly higher in the 10 μM EGT group than in the control group. The expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and NAD(P)H quinone dehydrogenase 1 (NQO1) were significantly higher in the oocytes of the 10 μM EGT group than in the control group. In the assessment of subsequent embryonic development after IVF, the 10 μM EGT treatment group improved the cleavage and blastocyst rate significantly than the control group. Conclusions: Supplementation of EGT improved oocyte maturation and embryonic development by reducing oxidative stress in IVM oocytes.

Fisetin Protects C2C12 Mouse Myoblasts from Oxidative Stress-Induced Cytotoxicity through Regulation of the Nrf2/HO-1 Signaling

  • Cheol Park;Hee-Jae Cha;Da Hye Kim;Chan-Young Kwon;Shin-Hyung Park;Su Hyun Hong;EunJin Bang;Jaehun Cheong;Gi-Young Kim;Yung Hyun Choi
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.5
    • /
    • pp.591-599
    • /
    • 2023
  • Fisetin is a bioactive flavonol molecule and has been shown to have antioxidant potential, but its efficacy has not been fully validated. The aim of the present study was to investigate the protective efficacy of fisetin on C2C12 murine myoblastjdusts under hydrogen peroxide (H2O2)-induced oxidative damage. The results revealed that fisetin significantly weakened H2O2-induced cell viability inhibition and DNA damage while blocking reactive oxygen species (ROS) generation. Fisetin also significantly alleviated cell cycle arrest by H2O2 treatment through by reversing the upregulation of p21WAF1/CIP1 expression and the downregulation of cyclin A and B levels. In addition, fisetin significantly blocked apoptosis induced by H2O2 through increasing the Bcl-2/Bax ratio and attenuating mitochondrial damage, which was accompanied by inactivation of caspase-3 and suppression of poly(ADP-ribose) polymerase cleavage. Furthermore, fisetin-induced nuclear translocation and phosphorylation of Nrf2 were related to the increased expression and activation of heme oxygenase-1 (HO-1) in H2O2-stimulated C2C12 myoblasts. However, the protective efficacy of fisetin on H2O2-mediated cytotoxicity, including cell cycle arrest, apoptosis and mitochondrial dysfunction, were greatly offset when HO-1 activity was artificially inhibited. Therefore, our results indicate that fisetin as an Nrf2 activator effectively abrogated oxidative stress-mediated damage in C2C12 myoblasts.

Regeneration of adventitious root from Calystegia soldanella L. in Jeju island and mass proliferation method using bioreactor system (제주지역 갯메꽃(Calystegia soldanella L.) 유래 부정근 재분화 및 생물반응기 시스템 이용 대량증식법)

  • Jong-Du Lee;Eunbi Jang;Weon-Jong Yoon;Yong-Hwan Jung
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.37-37
    • /
    • 2021
  • Calystegia soldanella L. is a perennial herbaceous halophyte belonging to the convolvulaceae family, which mainly grows in coastal sand dunes in Korea. Shoots and rhizomes are edible, and roots called 'Hyoseon Chogeun' are known to have medicinal effects such as antipyretic, sterilization, and diuretic. In addition, physiological activities of antioxidant, anti-inflammatory, antiviral, antifungal and PTP-1B (protein tyrosine phosphate-1B) inhibition have been reported. In this study, in vitro induction cell lines of C. soldanella L. collected from the coastal sand dunes in Jeju island was redifferentiated into adventitious roots that can be used as medicinal resources. Also the biomass of mass-proliferated adventitious roots using a bioreactor were evaluated. Plants of C. soldanella L. were collected from the crevice of the seashore in the coastal area of Taeheung 2-ri, Namwon-eup, Seogwipo-si. Then, it was separated into leaves, stems, rhizomes, and roots, and surface sterilized with 70% ethyl alcohol and 2% NaOCl (sodium hypochlorite). After washing with sterilized water, each organ section was cultured in Hormone-free MS medium (Murashige & Skoog Medium). As a result, the induction response rates were evaluated at 85% and 55%, respectively, in terms of callus formation and shoot generation in the rhizome segment. In the case of the adventitious roots morphological characteristics induced by single-use treatment of auxin-based plant growth regulators IBA and NAA from redifferentiated shoots were compared. Most efficient adventitious root culture method as a rooting rate, number, length, and biomass proliferation in the bioreactor system was confirmed when treated by culturing in MS salts, Sucrose 30 g·L-1, and IBA 1mg·L-1 for 4 weeks. In this study, the medium composition and culture period were confirmed using a bioreactor system to mass-proliferate adventitious roots derived from C. soldanella L. in Jeju island. Also this adventitious root line developed a new medicinal material could increase value of the bio-industry ingredient through quantitative and qualitative screening of phyto-bioactive compounds.

  • PDF

Purple perilla frutescens extracts containing α-asarone inhibit inflammatory atheroma formation and promote hepatic HDL cholesterol uptake in dyslipidemic apoE-deficient mice

  • Sin-Hye Park;Young Eun Sim;Min-Kyung Kang;Dong Yeon Kim;Il-Jun Kang;Soon Sung Lim;Young-Hee Kang
    • Nutrition Research and Practice
    • /
    • v.17 no.6
    • /
    • pp.1099-1112
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Dyslipidemia causes metabolic disorders such as atherosclerosis and fatty liver syndrome due to abnormally high blood lipids. Purple perilla frutescens extract (PPE) possesses various bioactive compounds such as α-asarone, chlorogenic acid and rosmarinic acid. This study examined whether PPE and α-asarone improved dyslipidemia-associated inflammation and inhibited atheroma formation in apolipoprotein E (apoE)-deficient mice, an experimental animal model of atherosclerosis. MATERIALS/METHODS: ApoE-deficient mice were fed on high cholesterol-diet (Paigen's diet) and orally administrated with 10-20 mg/kg PPE and α-asarone for 10 wk. RESULTS: The Paigen's diet reduced body weight gain in apoE-deficient mice, which was not restored by PPE or α-asarone. PPE or α-asarone improved the plasma lipid profiles in Paigen's diet-fed apoE-deficient mice, and despite a small increase in high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein (LDL)-cholesterol, and very LDL were significantly reduced. Paigen's diet-induced systemic inflammation was reduced in PPE or α-asarone-treated apoE-deficient mice. Supplying PPE or α-asarone to mice lacking apoE suppressed aorta atherogenesis induced by atherogenic diet. PPE or α-asarone diminished aorta accumulation of CD68- and/or F4/80-positive macrophages induced by atherogenic diet in apoE-deficient mice. Treatment of apoE-deficient mice with PPE and α-asarone resulted in a significant decrease in plasma cholesteryl ester transfer protein level and an increase in lecithin:cholesterol acyltransferase reduced by supply of Paigen's diet. Supplementation of PPE and α-asarone enhanced the transcription of hepatic apoA1 and SR-B1 reduced by Paigen's diet in apoE-deficient mice. CONCLUSIONS: α-Asarone in PPE inhibited inflammation-associated atheroma formation and promoted hepatic HDL-C trafficking in dyslipidemic mice.